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Abstract—Location-based services (LBSs) are often based on
an area or place as opposed to an accurate determination of the
precise location. However, current mobile software frameworks
are geared towards using specific hardware devices (e.g., GPS
or 3G or WiFi interfaces) for as precise localization as possible
using that device, often at the cost of a significant energy drain.
Further, often the location information is not returned promptly
enough. To address this problem, we design a framework for
mobile devices, called Geo-fencing. The proposed framework
is based on the observation that users move from one place to
another and then stay at that place for a while. These places
can be, for example, airports, shopping centers, home, offices
and so on. Geo-fencing defines such places as geographic
areas bounded by polygons. It assumes people simply move from
fence to fence and stay inside fences for a while. The framework
is coordinated with available communication chips and sensors
based on their energy usage and accuracy provided. The essential
goal is to determine when users check in or out of fences in
an energy effiecient fashion so that appropriate LBS can be
triggered. Windows based smartphones are used to prototype
Geo-fencing. Validations are conducted with the resulting
traces of outdoor and indoor activities of several users for
several months. The results show that Geo-fencing provides an
effective framework for use with LBSs with a significant energy
saving for mobile devices.

I. INTRODUCTION

Mobile users experience a considerable amount of battery

drain when they use location-based services (LBSs). This

results from the use of commodity GPS and WiFi inter-

faces that are typically power hungry but are widely used

to implement LBSs. To optimize energy expenditure, many

researchers have proposed schemes that focus on using less

power hungry chips or subsystems more often than subsystems

that require a higher power. One of the representative low-

power subsystem that can aid location determination is the ac-

celerometer. Accelerometer can effectively triggering location

update procedures. For example, when the device detects any

motion, it can activate more power hungry subsystems such as

the GPS to determine the location. However, in current state

of the art of mobile software systems, device enable/disable

needs to be explicitly handled by the LBS applications in the

resource framework. The framework manages all the resources

in the mobile devices, and it controls the state of installed

sensors and devices. Since devices are enabled on demand,

it may take time for the devices to come to an active and

ready state so that they can be sampled. In case of the GPS,

it takes about 10 seconds on average to ‘warm up’ (of course,

the cold and hot state requires different delays) [1]. WiFi takes

about 3 seconds once it is enabled to scan all the channels and

retrieves the signal strength of each AP in the vicinity so that

localization can be enabled . Communication chips such as 3G

– normally enabled all the time – take about 9 milliseconds.

The low power sensors such as the accelerometer and the

digital compass take 140 milliseconds and 36 milliseconds

for enabling and retrieving data, respectively. This response

time can be minimized to negligible values by making passive

transition to proactive one. As the resource framework keeps

track of the location and motion information, it can respond

instantly to any location change and it can update the location-

related data when the data needs to be updated. Note that our

previous work [2] showed the required accuracy is changed

only when user moves, and therefore, the framework does not

need to hold always new information.

These observations prompt us to devise a new resource

framework. This new framework can be used where the

mobile platform may have many devices and sensors that may

have unexpected delays for activation and consume different

amounts of energy. We propose a new geographic fencing

concept, called Geo-Fencing. This is motivated by the

observation that mobile users often dwell in a place (e.g., a

bounded area such as home, office, school, shopping area etc.)

for an extended period of time and, in between, simply move

from place to place. Many LBSs do not need to know the

precise location of user or track the user at all times, and

simply use location just to determine whether the user is in

such a place, or users’ history of being in such areas.

The Geo-Fencing identifies possible places (where inter-

ested persons could be found) by geographically fencing them

with the global coordinates, then it establishes different service

contexts for each fenced area, and it uses different hardware

resources (sensors and devices) to save energy usage and

recommends a different suit of applications for users according

to the location context. Note that the size and complexity

of the fence can be diverse. Fences can even be hierarchical

as a fence can be included in other higher level fences. For

example, a shoe store which offers discount coupons for users

can be categorized in various ways, such as shoe store in the

eastern wing of the mall that is again part of the entire mall.

Fences are tagged with well-known names. Fences are

typically represented by polygons of arbitrary shapes. While

using rectangles simplifies computation to determine when

the user checks in or out of the fence, polygon offers a978-1-4673-1298-1/12/$31.00 c© 2012 IEEE.



Fig. 1. Geo-fence examples.

more accurate representation, especially when there are many

fences in a region that could be overlapping. See Figure 1 for

examples of fences.

We now describe how the proposed Geo-Fencing frame-

work can be used. When a user checks in to a fence (called

incoming fence), the proper application can be turned on

proactively, and then makes proper services based on his (or

her) personalized profile. For example, a newly stocked XBOX

game title can be recommended to users who are interested

in XBOX titles. Additionally, the proposed framework may

turn off the GPS chip (in a mobile device) to stop the battery

drain by repeatedly accessing the GPS chip inside fences

and may turn on the WiFi for faster communication if it is

needed and available. When the user leaves the current fence

(called outgoing fence), the 3G based triangulation confirms

his (or her) leaving, and the accelerometer data predicts the

current state. When the user is moves to another fence (called

between fences), the proposed framework mainly makes a state

prediction, and also retrieves the location data when it decides

to update the current location information. In section III, we

discuss more in detail about this incoming, outgoing fence,

between fences and state prediction.

To summarize, this work makes the following contributions:

• introducing the geographical fencing concept for mobile

device’s accurate, fast, and energy efficient framework;

• studying the classification of human activity based on low

power sensors that allows us to achieve a good accuracy

in detecting human activities while still being energy

efficient;

• developing a prototype testbed using a windows mobile

smartphone.

The remainder of the paper is organized as follows. Sec-

tion II discusses the problems with state of the art resource

frameworks. Section III presents key design principles, and

introduces our framework operation that is described in sec-

tion IV. Then in section V, we ad some discussions. Section VI

describes our prototype implementation. Section VII discusses

Fig. 2. Resource frameworks on smartphone. Current state of the art is on
the left. The proposed solution is proactive and is on the right.

related work, and section VIII concludes the paper.

II. CURRENT FRAMEWORK

The major causes of battery drain in the current framework

(for applications like LBS) are: (i) on-demand (as opposed

to proactive) activation and operations, (ii) limited energy

environment, and (iii) always demanding the highest possible

accuracy that also spends significant energy.

A. Resource framework

In current applications such as LBS, the resource framework

operates in the on-demand mode as you can see on the left

side of Figure 2. The LBS application requests the location

information from the resource framework. The framework in

turn queries the resource and delivers the information to the

application that requested it. The framework does not maintain

any location related state on its own.

B. Resource cost

We expect increased hardware variety and software com-

plexity in smartphones as they become more prevalent than

ever. Better sensors, CPUs, communication chips and bat-

teries as well as new device yet unforeseen will become

available. For example, 2G or 3G has given way to 4G;

WiFi, Bluetooth, GPS, and gyroscope devices have become

common, and battery technology has fed more powerful CPUs

and displays including brighter multi touch screens. In the

Geo-fencing, we are able to utilize many of these chips and

sensors to determine the current location directly or indirectly,

and ultimately to build up a smarter framework. We can do

several levels of localization with different devices or sensors

with varying degrees of accuracy and energy costs.

1) Absolute Position: Existing frameworks can determine

the user’s location reasonably well using GPS, 3G or WiFi-

based localization.

GPS: GPS is obviously the most accurate for localization.

There have been many studies on its accuracy and energy

usage. In our testbed, its average error is found to be 10 meters

and its energy expenditure per sampling is around 29.15 joules.

3G: 3G is the most available resource among all devices used

for localization as the interface is always on. The cell-tower

ID can serve as a simple coarse-grain location information. We



Fig. 3. Relative angle in digital compass

will also augment this later with signal strength information. In

our experimentation, the average error is around 300 meters

and its energy expenditure per sampling is around 1.2 milli

joules.

WiFi: WiFi provides the most valuable location information

in the indoor environment where it is prevalent and GPS

may not work very well. However, in our work, we have

used it outdoors. As a possible localization method, SSID

matching can be used, but it is required to access SSID

database since the database is necessary to do the large-scale

location. Unfortunately, many areas do not have such the

database, and so it is hard to utilize the SSID matching. In

our experimentation, its average error is around 30 meters and

its energy usage for a sampling is around 33.66 joules.

2) Relative Movement: Existing frameworks can detect rel-

ative movement using the accelerometer and digital compass.

Accelerometer: The accelerometer is the most efficient and

sensitive sensor for motion detection among sensing devices,

it is accurate and very energy efficient. Many researches pro-

posed their own methods to effectively and accurately identify

the pattern of human behaviors [3]–[5]. In those approaches,

their hit ratio is around 40∼90 % in 6∼20 activities. The high

hit ratio –the successful prediction– comes from determination

of distinctive activities. In the proposed framework, we sim-

plify these behaviors to three activities (walking, driving, and

stationary). Additionally, walking is divided into indoor and

outdoor walking, driving to highway driving and street-way

driving. In such the simplified classification, we can achieve

around 90% hit ratio. Note that “street-way” driving refers to

driving outside the highways.

Digital Compass: The use of digital compass is limited. It

only provides the angle of orientation of the mobile device’s

main axis. If the mobile device is fixed relative to the user, the

change in compass angle, possibly along with accelerometer

data, can detect certain activity. For example, during driving

the mobile is expected to be in a fixed orientation with the

user (say, in the pocket or a purse)figure 3. Then, the compass

can detect turns, e.g.

Several other sensors and communication interfaces are

available in current smartphones. However, they are limited

in some perspective. For example, Bluetooth suffers from the

fact the communication range is small and there are typically

Fig. 4. Fence areas registered with the Geo-fencing

no bluetooth devices that are fixed , like WiFi APs. The

ambient light sensor needs a deeper examination to be used for

detection of human activity as the same environment can vary

widely in terms of lighting, and also the phone can often be

in a pocket or purse. The gyroscope sensor can be represented

with a combination of accelerometer and compass. We have

described aforementioned resources with variant accuracy and

cost in Table I, and based on the table we can improve the

current framework based on the table.

C. Approach

The proposed proactive framework will provide efficient

energy management, increasing battery life. This can be done

without compromising the accuracy of the underlying devices,

and without imposing latency in performance.

III. SYSTEM OVERVIEW

In this section, we explain the fundamental building blocks

of Geo-fencing. These are fence, activity classification and

energy consumption profiles. These together provide a solid

grounding for the proposed energy aware proactive resource

framework for mobile devices.

A. Fence

We first present the concept of fence in Geo-fencing.

The fence is divided into three categories predefined

fence, user-learned fence, and elsewhere.

fence: A fence surrounds a polygonal area, and is

defined by a set of GPS points. The fence is simply defined

by the polygon and a buffer area on all sides of the polygon

(see section V). When the framework detects that the user

is checking-in a certain fence, the framework can enable

appropriate applications. For example, when the user checks

TABLE I
ACCURACY AND ENERGY COSTS IN SOME OF THE AVAILABLE RESOURCES

ON THE SMARTPHONE

Accuracy Energy Comment
GPS High High open sky needed
3G Low Low good coverage in urban areas

WiFi Middle High limited coverage (predominantly indoors)



Fig. 5. Tracing around a home fence.

at the airport fence, the framework initiates airport-related

applications. E-tickets can be popped up, information about

delays or gate information can be displayed, shopping or cafe

specials can be announced etc.
predefined fence: A predefined fence is created

by a person, institution other than the phone’s owner, or the

framework itself. These are typically well-known fences that

are widely used. For example, an airport, a shopping center, a

hospital, or a school. Many areas can be defined as pre-defined

fences. This information is tagged with GPS, Cell-tower ID,

and MAC address of AP. Since many map applications have

already had this information, plugging any map database

into our framework extends the predefined fences. In our

experiment, we registered some predefined fences with the

Geo-fencing in the tested area.
user-learned fence: The user-learned fence is an

area the user periodically visits. For example, the certain

area that user visits at work hours in working days can be

defined as “office”. Similarly, “home”, “friend’s house” and

many other fences can be defined based on the user’s moving

patterns. Figure 4 describes a collection of fence areas in the

Geo-fencing. Figure 5 shows an example of user-learned

fences, which is the home fence for one of authors. The home

labeled spot is the actual location of the home, and most of

GPS data is obtained around a window in the bedroom where

the mobile device is placed. Because the Geo-Fencing

holds the last location information, it indicates that last GPS

data are mostly gathered around the entrance of the home. The

majority of information comes from the home labeled spot,

but taking trash to dumpster and picking up the mail at the

mail room are also used to determine the home fences. This

example is illustrate the concept of fences alluded to before.

The mailroom and dumpster are also part of the home fence.

Thus, one can define the concept of a sub-fence. As an

example, when the user visiting shopping mall, various stores

can be sub-fences. We leave these sub-fences as future

work in order to simply the presented framework.
elsewhere-fence: The elsewhere-fence is an area

where it does not belong to any predefined fence, or so that

we leave this as the elsewhere-fence and it can be manually

tagged by the user.

B. Activity Classification

We utilize the phone’s sensors for classifying user’s activity

in a coarse fashion. This in turn is used to prompt more

accurate location determination that perhaps requires more

energy. For example, change in activity (e.g., brisk walking

after a period of relatively sedentary activity) can possibly be

followed by a checking out from a fence (say, office). Thus,

the framework can now trigger GPS to determine the correct

location. This policy effectively reduce energy demand and ac-

tivity sensors such as accelerometer are relatively inexpensive

in terms of energy.

In our work, we mainly used three activities to demonstrate

the power of our method – Walking, Driving and Stationary –

but we also explored additional activities to verify if they can

be used in estimating the current state of the user. Figure 6

shows the accuracy of our activity detection technique which

is based on the standard deviation of sampled accelerometer

and compass data.

In Figure 6 we present the accuracy results for activity

classification. We can identify 98.7% of the mobile activity

from immobile activity based on the standard deviation of

accelerometer data – the small portion of miss comes from

small movements that are possible even in the stationary state.

The accuracy of distinguishing between walking and driving

detection is 92.5% – stops for traffic results in some misses.

However, in our method distinguishing between indoor and

outdoor walking was hard (not much better than random).

More is explained in section V.

The compass data is used to discriminate between the city

street (street-way) and the highway driving. The classification

as done follows. We classified the street-way driving with

90 degree turns and stops/moves at various traffic signs, and

we identified the highway driving with straight line driving,

possibly with smooth curvatures. The overall accuracy is not

very high (69.4%). A confusion matrix is presented in Table II.

This shows that highways are almost always correctly labeled.

But often street-ways are labeled as highways, likely because

Fig. 6. Classification of user activities and their accuracies.



TABLE II
CONFUSION MATRIX FOR DRIVING

Prediction
Street-way Highway

T
ru

th Street-way 22.2% 77.8%
Highway 3.0% 97.0%

TABLE III
OVERALL CONFUSION MATRIX

Prediction
Stationary Walking Driving

T
ru

th Stationary 97.1% 0 2.9%
Walking 0 76.9% 23.1%
Driving 0 0 100%

less stops are no turns. More work is clearly needed for a

better classification.

Based on these results, we finally chose Stationary, Walking

and Driving as the motion-level states to detect user motion,

then determine the current fence-level state, and consequently

the current fence. The motion-level states play the role of a

trigger to detect the fence-level state (which is one of incoming

fence, outgoing fence and between fences, and is explained

in section IV). Table III summarizes the accuracy of overall

prediction for those motion detection methods, which gives the

basis to construct the system operations in section IV. Note

that all the results are the result of using low energy sensors

and no high energy chips are used to increase the accuracy.

C. Energy Consumption

We primarily take into account the energy usage as well

as efficiency. To monitor accurate energy consumption, we

use the power monitor as a monitoring tool [6]. Once the

mobile device is connected to the probe of the measuring

device, it shows watt/current usage and records it into a

file. Figure 7 (a) shows the measured device’s watt usage

when only GPS chip is enabled in the background.1 The

power usage requires additional 330mW when the display

device is turned on. In this figure, 10.4mW (min 7.1mW/max

11mW) is used for the system ready state, and 478mW (min

270mW/ max 590mW) is used for the GPS chip enabled state,

and 1460mW (min 1441mW/ max 1508mW) is used for the

sensing state. The power usage returns to 10.4mW when the

chip is disabled. This is obtained from a windows phone [7]

and the values reported here could be different from other

devices, but it is expected that qualitative patterns are similar.

Figure 7 (b) shows the simplified energy profile. Figure 8

shows energy blocks for the GPS, 3G, WiFi, Accelerometer,

and Digital compass. Notice that the GPS and WiFi need chip-

on state while 3G, Accelerometer, and Digital compass do not

need the chip-on state but they simply can read values from

each sensor. This simplified energy profiles are used in our

framework rather than fluctuating real values. Figure 7 shows

the shape of chip-on and that of sensing GPS signal. From

1The term background refers to periods when the display of the smartphone
is turned off and no foreground application is activated.

(a) energy usage in mobile device (b) simplified energy block of energy usage

Fig. 7. Energy usage of the GPS chip in a mobile device.

the figure, we can observe the sensing period is very short in

comparison to chip-on period, which means the energy usage

for a sampling is a small amount. Therefore, number of sensing

is not substantial after the chip is on. We call a frequency for

the number of sensing in one chip-on period.

IV. SYSTEM DESIGN

In this section, we introduce the Geo-fencing in detail.

As we discussed in the previous section III-B, we divide

the human activities into three states or categories: driving,

walking and stationary. In our prototype we could distinguish

between these three states with a high degree of accuracy. With

this accurate activity classification (motion-level state), we can

determine a fence-level state. We discuss the fence-level states

now.

A. Fence-level State Transition

The Geo-fencing work based on three fence-level states

– incoming fence, outgoing fence, and between fences.

1) Incoming Fence: The framework changes its fence-level

state to incoming fence when a user checks in to a known

fence. In this fence-level state, the framework turns off the

GPS chip to save energy, and only looks for the associated

cell tower’s signal strength variations. The framework does

not attempt to verify or change its fence-level unless its cell-

tower’s signal strength is 40dB weaker than the value at check-

in. In urban regions with small cells, the matching of last few

cell-tower’s IDs could be used, but, in the rural region, cells

could be substantially large. Therefore, the framework uses the

cell-tower’s signal strength variation for the state transition.

The last three cell-tower IDs are recorded anyhow to prevent

the fence-level state from being frequently changed when the

user is located at the boundary of a cell. The value of 40dB

is large enough to prevent false transitions.

2) Outgoing Fence: The framework changes its fence-level

state to outgoing fence when the signal strength of each cell-

tower falls below 40dB than the recorded values at check in.



Fig. 8. Energy usage profiles for GPS, 3G, WiFi, accelerometer and compass.

Then the framework turns on GPS and confirms its location

to check whether it is out of the current fence or not.

3) Between Fences: The framework checks its speed based

on the GPS information – the speed information is available

from the GPS chip. Then it calculates the estimated time of

arrival (ETOA) to any target fence (which can be changed in

the course of movement). When the framework is in the fence-

level state of “between fences,” it checks its motion-level state.

If the motion-level state is changed, the ETOA needs to be

recalculated because the current speed is changed. We use the

interval of C·ETOA to turn on the GPS and recalculate a new

ETOA, where C is a constant coefficient less than 1. Since the

coefficient is less than 1, the framework can reconfirm whether

or not the previous target fence is changed by recalculating

new ETOA before it arrives at the target fence. This step

is needed because people can change its direction or speed

unpredictably.

B. Motion-level State Transition

The aforementioned fence-level state transition is activated

based on the motion-level state transition. The motion-level

states are described in Table IV, and the current state is

decided according to the activity classification presented in

section III-B.

Stationary: In the stationary state, we have three tran-

sitions – Loop, Incoming, Outgoing. To join the stationary

state, the standard deviation of the accelerometer data should

be smaller than S-Threshold (the expected deviation in being

stationary). If the previous state was stationary, its S-Threshold

becomes double. Then it stays at its loop, the tendency of

state is more likely to stay, and this prevents frequent leaving

and returning. To leave this state, the accelerometer should be

vibrated bigger than (doubled) S-Threshold.

Algorithm 1 Geo-fencing

1: // Incoming Fence

2: if Recorded fence then

3: Turn off GPS chip

4: Check recorded cell-tower ID’ SS

5: if STATE is WALKING or DRIVING then

6: @2 min period

7: else if STATE is STATIONARY then

8: @10 min period

9: end if

10: end if

11: // Outgoing Fence

12: if Recorded Cell-tower ID’s SS < threshold then

13: Turn on GPS chip and confirm

14: end if

15: // Between Fences

16: Check speed

17: ETOA w/ current speed

18: if STATE change then

19: Recalculate TOA

20: end if

21: @ C·ETOA turn on GPS and calculate TOA from current

location to nearest fence

Walking: To join the walking state, the standard de-

viation of the accelerometer data should be larger than W-

Threshold (the expected deviation in being walking). If the

previous state was walking its W-Threshold is halved. Then it

stays at its loop. To leave this state, accelerometer should be

vibrated smaller than (halved) W -Threshold.



TABLE IV
STATE TRANSITION ACTIVITY CLASSIFICATION.

State Flow Activity Classification and Description
S - Loop continuous stationary

- Leave for P leave the stationary spot by walking
- Leave for D leave the stationary spot by driving (direct transition from S to D is unlikely occurred)

W - Loop continuous walking
- Leave for D checks in the car, and leave the spot by driving
- Leave for S stays in the rest area, or stays in the car without moving

D - Loop continuous driving
- Leave for S stays in the car without moving (longer traffic sign or stays in the car at parking lot)
- Leave for P checks out the car, and start walking

Driving: To join or stay in the driving state, the standard

deviation of the accelerometer data should be larger than S-

Threshold, and smaller than W -Threshold. To leave the state,

its accelerometer should be vibrated out of thresholds (bigger

for Walking or smaller for Stationary).

The two threshold values based state-prediction achieves

high hit ratio from the ground truth and prevents the battery

from being drained too much by minimally accessing high-

profile sensors in a fence.

V. DISCUSSION

As stated before, a fence includes a marginal area around

the line between GPS points. The size of this margin should

be carefully considered. In predefined fences, we believe the

framework needs this buffer area, but, user-learned fences do

not require it because the user’s moving patterns themselves

can generate the boundary. The determination of the marginal

area affects the accuracy of checking-in. For example, if the

marginal are is too wide, checking-in occurs more frequently

than it should – these are false positives (FP). If the marginal

area is too tight, checking-in occurs less frequently than it

should – called false negatives (FN). Checking-out is also af-

fected by this marginal area. Figure 9 shows a predefined office

building; the solid line is actual building shape and dashed

lines are added marginal area of -5,+5,+10...+25 meters.

Consequent results are depicted in Figure 10. If it is too

wide, FP will increase; otherwise, FN will increase. Figure 10

depicts CDF and CCDF. We observe from the figure that (i)

FP increase as the marginal widens in CDF, (ii) FN decrease

as it grows in CCDF. Note that the sum of these values is also

depicted as solid line in CDF. We found that if the marginal

area is too tight we experienced frequent FN, and if the

marginal area is too wide we experienced frequent FP. When

the marginal area is wider than 5 meters, we can see that there

is no FN and the increasing pattern of FP in +5 +15meters is

smooth. As a result, +5 meters is reasonable choice and that

choice incurs smooth checking-in and checking-out.

VI. EXPERIMENT AND EVALUATION

We now evaluate the performance of the proposed frame-

work in terms of the energy savings and the efficiency.

A. Implementation for trace file gathering

We implemented a measurement tool on an HTC Win-

dows Phone [7]. We collected experimentation data of several

months from multiple users. The users are categorized into

researchers, their family and friends. They carry devices on

the front of their car, in back pocket, or in purse. The users

are mostly in the region of Redmond, Seattle, and Bellevue

city, but some files are traced at different cities - when users

Fig. 9. Various sized fences according to marginal (buffer) area.
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are on a business/personal trip. The trace application runs in

the background, and it automatically reports its trace file at the

end of day through wireless networks. The user neither needs

any additional action to report nor hinders the measurements

by installed application. In the measurement tool, it traces its

GPS (number of satellite, Latitude, and Longitude), 3G (cell-

tower ID, region code, and its signal strength), WiFi (number

of neighboring AP, and these AP’s name, mac address, and

RSSI), accelerometer (x,y,z value), and digital compass (angle

value) with absolute time stamp.

B. Trace files and its validity

The traced file is available at [8], for the privacy matter, the

4 digit ID is randomly generated from local device, then we

make sure the trace file is not used for tracking the person

or any other purpose except the current research. In addition

to the real world trace files, we implemented the framework

to estimate the energy savings based on these collected files,

and those can be used for comparison between the current

framework and the proposed framework.

C. Operation of framework

We now demonstrate the energy usage and the performance

of Geo-fencing based on the first author’s trace data from

his office to his home. In Figure 11, as he leaves the office,

(a) shows the GPS sampling, which can trace accurately but

samples 64 times by enabling the GPS chip all the time;

322.42894 Joules are used. However, when accelerometer and

compass sensors are used for the framework, (b) shows the

14 times of the GPS sampling from office fence (left-bottom)

to home fence (right-top, blue); 73.49 Joules are used. The

77.21% of energy is saved in this scenario. The five fences are

shown in Figure 11 (b), where the red fences are predefined

fences – B99, B92, Commons, and Redmond town center from

left-bottom to right-top, and the blue fence is a learned fence –

the home fence at the right-top. More scenarios are examined,

and roughly around 60∼80% of energy is saved.

D. Application of framework

The Geo-Fencing can also work great as security related

applications. For example, industrial companies are sensitive

on their documentation leaks by any photography. As a

solution, many company disable workers’ camera functions

by affixing stickers on the camera. More advanced solution

for smartphone is available such as disabling-camera function

when a worker’s ID card is checked at the entrance, the server

sends the message of disabling camera function. However, the

Geo-Fencing can work in this application, when worker

checks in the secured office fence, it can automatically disables

the camera, then mobile device can send a confirmatory

message to the server. Without ID card, Geo-Fencing can

work great with the required minimum message exchange with

the server. Many other systems and devices for vehicles can be

improved by our Geo-Fencing. Majority of those systems

are wired or battery powered. As Geo-Fencing offer a

smarter power management system, those can be on only when

it needs to and off most of the standby time.

VII. RELATED WORK

Detection and prediction techniques of human activity with

the accelerometer in the mobile devices have been widely

developed because it is cheap and accurate. Attaching multiple

sensors or singular sensor to human body increases the hit ratio

with the proposed technique. However, it is obvious that, as

they classify human activity into many activities, the hit ratio

decreases. Discriminating human activity into 20 activities,

the hit ratio spans between 41.42∼97.49% [3], 10 activities

32.8∼ 100% [4], 8 activities 32.63∼87.18% [9], 6 activities

55.5∼ 96.5% [10], and 5 activities 49.4∼95.5% [5]. They

also used mathematical methods to increase hit ratio such as

statistical approaches. The common goal of all these activity

detection and prediction methods is to increases the hit ratio

in classifying human activity.

Many localization techniques have been proposed and some

of them have been commercialized. Localization is undoubt-

edly necessary because people are always curious where they

are regardless of outdoor or indoor environment. Since the

GPS chip drains battery, it is the key for GPS-based localiza-

tion to use the GPS as minimal as possible [11]. The social

network based techniques that predict user’s moving pattern

based on the previous path were studied so as to minimize

GPS usage [12], [13].

The WiFi’s SSID encoding technique [14], cell-tower signal

strength [15], [16], FM radio station signal strength [17], and

camera and microphone (on the cell phone) based techniques

[18]–[20] are widely studied and validated. The energy profil-

ing based techniques are also proposed [2], [21].

The predefined tags are abundant and its growth is fast,

more than 3 Billion tags are created in last 6 months [22]. To

utilize these resources efficiently, the proposed framework can

be a great solution; for example, plug-into Goolge’s checkin

service can expand our work [23].

VIII. CONCLUSION

In this paper, we first identified inefficient resource coordi-

nation in the current framework that affects battery drain. Sec-

ondly, we define the fence concept for human moving patterns.

Lastly, we detected human motion based on low cost energy

sensors. These findings are fed into the Geo-Fencing. We

then implemented the proposed framework on windows phone

and executed a performance evaluation study in order to

validate both the accuracy and the efficiency. The experiment

results present that the Geo-Fencing provides an energy

effective framework in the mobile devices. Several challenges

still remained to be explored. We plan to elaborate the hierar-

chical fencing concept and verify if it is feasible and achieves

better accuracy. We also would like to enhance the technique

of detecting human motion to increase the hit ratio within the

proposed framework. Also, we will accumulate more trace data

to sophisticate the proposed framework.
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