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ABSTRACT

Rate selection in a wireless network is the problem of estimating
the current channel conditions and determining the best physical
layer bit rate for the outgoing frames in order to maximize the
current throughput. All rate adaptation algorithms in literature ar-
rive at an estimate of the current channel conditions by consider-
ing the recent history often in the order of seconds. In vehicular
WiFi access networks, the constantly changing wireless channel
conditions make the channel history quickly irrelevant. We de-
velop BRAVE — an SNR-based rate adaptation algorithm, which
only considers short history (500 ms) to make rate selection deci-
sions. We show that a coarse-grained training approach is suffi-
cient to estimate the SNR thresholds for rate selection as opposed
to previous approaches that train on a per environment or a per AP
basis. We study three frame-based rate adaptation algorithms and
a popular SNR-based rate adaptation algorithm along with BRAVE
and highlight their shortcomings in the rapidly changing vehicular
WiFi access environment. In order to compare the algorithms under
repeatable channel conditions, we also develop and use a novel em-
ulation methodology where a software radio-based programmable
noise generator is used to emulate varying link quality under vehic-
ular mobility. We show that BRAVE performs significantly better
than several prominent frame-based and the SNR-based rate adap-
tation algorithms.
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C.2.1 [Network Architecture and Design]: Wireless Communi-
cations—Vehicular Communications
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1. INTRODUCTION

The need for continuous innovation in the face of stiff compe-
tition has pushed major car manufacturers towards adopting the
“connected car" concept. The term “connected car" refers to the
integration of smartphone apps and content into the car. Typically
this is done via the car’s dashboard, enabling users to listen to on-
line music, access Web data and stream video to the car’s passen-
gers. The current systems simply use a cellular connection as the
backhaul. Such a system promises persistent albeit low bandwidth
connectivity which might not be sufficient for bandwidth intensive
applications. In addition, cellular data connections are expensive,
particularly given that most operators are moving away from flat-
rate pricing and introducing usage-based pricing. Thus, offloading
mobile data to urban WiFi networks has been considered by sev-
eral research groups [11, 16, 12, 8]. This not only provides an
opportunity for cost savings, but also could provide a higher av-
erage bandwidth in case of dense AP deployments if occasional
disconnections can be tolerated [10].

Choosing an appropriate physical (PHY) layer rate is important
when a WiFi network is accessed with vehicular mobility. The
802.11 protocol specification allows for multiple transmission rates
at the PHY layer each having a different modulation and coding
scheme. For example, the 802.11b offers 4 different bit rates rang-
ing from 1 to 11 Mbps and 802.11g offers 8 different bit rates rang-
ing from 6 to 54 Mbps. 802.11b/g interfaces are quite common
and thus typically there is a choice of as many as 12 different bit
rates. Generally speaking, higher bit rates result in higher through-
puts if the link quality is good but suffer from higher bit error rate
(BER) when the link quality deteriorates. Conversely, lower bit
rates provide lower throughput but are more resilient to lower qual-
ity links. 802.11 interfaces typically deploy a Rate Adaptation Al-
gorithm (RAA) to optimize the chosen rate so as to maximize the
overall throughput.

While RAAs have been widely studied, most of them [21, 5, 25]
are targeted for traditional indoor wireless networks and are inca-
pable of quickly adapting to the rapidly changing link quality ex-
perienced by the mobile vehicular client [17]. They tend to either
under-estimate or over-estimate the real-time link quality and hence
end up choosing incorrect bit rates. The unsuitability of industry-
standard RAAs towards vehicular WiFi access is also highlighted
in our past measurements in [10]. We also noticed that through-
puts dropped with increasing vehicular speed since the link quality
changed more rapidly at higher speeds adversely affecting the per-
formance of the RAA.

All RAAs try to predict the real-time link quality by examining
the past history — often over several seconds or longer. Generally
speaking, RAAs belong to one of two classes. Frame-based al-
gorithms maintain an estimation window for the link layer metrics



such as frame errors, while the SNR-based algorithms maintain an
estimation window for physical layer metrics such as received sig-
nal strength indicator (RSSI) that indicate SNR. In our knowledge
the literature does not provide a clear guidance as to what type of
RAA should be used in what scenario. Also, the performance of
these RAAs in vehicular environments has not been studied. All
evaluations are limited to indoor environments only. Indoor evalu-
ations hardly indicate performance under vehicular mobility as the
link quality fluctuates rapidly in the latter case and often on a per-
packet basis. Thus, the RAA must adapt very quickly.

In this paper we develop a new SNR-based RAA called BRAVE
(Bit Rate Adaptation in Vehicular Environment), particularly tar-
geting vehicular mobility. BRAVE estimates upcoming SNRs to be
experienced on the link based on a short history of recent SNRs and
exploits its knowledge of BER performances for different SNRs.
We employ a coarse-grained training approach to estimate the SNR
thresholds for rate selection as opposed to previous approaches that
train on a per environment [9] or a per AP basis [18]. We evaluate
the performance of BRAVE relative to several prominent RAAs.
Given the difficulty of doing a head-to-head comparison under ve-
hicular mobility (vehicular experiments are hard to repeat), we also
use a novel emulation methodology. Here, a software radio-based
programmable noise generator is used to emulate varying signal
quality under vehicular mobility. We show that BRAVE performs
significantly better than four other popular RAAs.

The rest of the paper is organized as follows. In Section 2 we de-
scribe the testbed setup. Section 3 describes a set of measurements
that help us understand the characteristics of the dynamically vary-
ing WiFi channel. This leads to the development of the BRAVE al-
gorithm that is described in Section 4. Section 5 evaluates BRAVE
along with four other RAAs. The shortcomings of the other RAAs
are highlighted. Section 6 describes the emulation experiments and
Section 7 the related work. We conclude in Section 8.

2. TESTBED

For our study, we use a metro-scale WiFi deployment in the Long
Island area in New York (population roughly 7 million). This ser-
vice is called ‘Optimum WiFi’ [6] and is provided by Cablevision,
a local cable TV provider and ISP. The WiFi network extends to
the more populous areas of Long Island where our study is con-
ducted. It also extends to parts of New York City, Pennsylvania,
Connecticut and New Jersey, where Cablevision has service. The
entire network has roughly 18,000 APs. WiFi access is provided
free to all subscribers of Cablevision’s TV or Internet services. We
note that there are several hundreds of such metro-scale WiFi de-
ployments in USA alone [3].

We use two Dell Latitude laptops running Linux to be carried in
the car. One laptop acts as the vehicular client and the other acts
as a sniffer. The original miniPCI WiFi interfaces from the lap-
tops are removed and replaced by carrier-grade interfaces (Ubiq-
uity XR2 [7]) with transmit power set to 25 dBm. The interfaces
use Atheros chipset supported by the latest Madwifi driver (ver-
sion 0.9.4) which we used. The WiFi cards are connected to 8 dBi
omni-directional antennas using two 2 meter long co-axial cables.
The antennas are carried at the back of the car as shown in Figure 2.

The client and the sniffer machines are connected using ether-
net. A program on the client machine continuously monitors the
current channel and notifies the sniffer machine in case of a chan-
nel change. Thus the sniffer always remains in the same channel as
the client machine.

On the client, we set the WiFi card’s AP selection mode to au-
tomatic, i.e. the Madwifi driver decides on the best AP to connect
to. DHCP is used to obtain the IP address. The Optimum WiFi net-
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Figure 1: Map of the stretch of the road used for the driving
experiments, along with the route shown in red. Approximate
WiFi coverages are shown (from [6]).

work allows clients to retain the IP address between associations;
thus DHCP delay is incurred only once at the beginning. Optimum
WiFi uses a browser-based authentication for the initial network
access. This is done manually. Again this step is needed only once.
Authentication is retained across associations.

The client generates upload traffic using the well known network
performance evaluation utility iperf (version 2.0.5) . The iperf
client is configured to send out 1400 byte UDP packets in a back-
to-back manner. The sniffer logs all traffic on the current channel.

Figure 1 shows the road stretch used in the experiments with
approximate locations of WiFi APs. This is a 9 mile round-trip
drive and is used to conduct all our experiments.

3. UNDERSTANDING DYNAMIC CHANNELS

To design an RAA in vehicular scenario it is important to un-
derstand the channel dynamics that the algorithm must adapt to.
It is also important to use a good measure of channel conditions.
Following the general motivations behind the design of a major
SNR-based RAA, CHARM [18], we use SNR as an indicator for
channel conditions. It is well known that SNR determines the bit
error rate (BER) for a wireless channel for a given PHY layer rate.
Thus, direct measurement of SNR is expected to provide a simple
mechanism to estimate the most effective rate to be used. This mea-
surement can be done on a per-packet basis providing a method for
quick adaptation. This is in contrast to frame-based methods that
require several packet transmissions to build up a reliable statistics
for the error rate.

All 802.11 interfaces report RSSI for each received frames. De-
pending on the interface and driver, the RSSI can be the measured
SNR or the measured received signal strength. In the latter case,
SNR can be calculated from a separately reported noise floor. In
our reported experiments, RSSI is the same as SNR reported di-
rectly by the driver.

In the following we carry out a set of measurements to under-
stand the error performance of 802.11b/g interface under vehicular
mobility. This will form the basis of the BRAVE algorithm that we
will describe subsequently.



Figure 2: Two 8 dBi omni-directional antennas are mounted at
the back of the car using a bicycle rack.

3.1 The CycleRate Algorithm

To understand the error performance of all 802.11b/g bit rates
under different channel conditions we create a rate selection algo-
rithm that simply loops through all the available bit rates on a per
packet basis. We disable retries so that every packet is transmitted
exactly once. Thus, there is no exponentially increasing backoff de-
lays between transmissions. We call this the CycleRate algorithm.
On average, the duration of one complete cycle is approximately
27 ms. However, this is much larger than the channel coherence
time in out-door environments. In [9] the authors have determined
the channel coherence time to be as small as 300 s in realistic ve-
hicular WiFi access settings. Thus, we do not expect the different
PHY layer rates to be directly comparable for error performance
within a single cycle of the CycleRate algorithm but on average we
believe our measurement methodology provides a good first order
approximation of their error performances at different SNR levels.

We conduct a driving experiment using the CycleRate algorithm
using our experimental setup described in Section 2. UDP upload
from the vehicular client to a server on the Internet is used as the
traffic load. A saturated load is used — UDP packets are transmit-
ted as fast as possible. The chosen packet size is 1400 bytes. We
choose to use upload experiments instead of downloads as the WiFi
APs are not under our experimental control. The assumption, how-
ever, is that the wireless channels are symmetric and the lessons
learnt in these experiments are equally applicable for download sce-
narios.

In Figure 3 we plot the fraction of packets successfully deliv-
ered at different RSSI values. The RSSI is measured off the last
received ACK packet. We see that 802.11b and 802.11g have dis-
tinctly different packet loss characteristics. The DSSS modula-
tion scheme used for 802.11b rates tends to be much more re-
silient to packet losses than the OFDM modulation scheme used
for 802.11g rates. Within each group, the lower rates show further
resilience to packet loss because bit error rate (BER) increases with
bits/symbol and lower rates are encoded with smaller bits/symbol.
This is more clearly seen in case of 802.11g rates than in case of
802.11b rates. Note that the theoretical proportionality of BER to
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Figure 3: Fraction of packets successfully delivered at varying
RSSI levels for various 802.11b/g rates.

bits/symbol holds only when the channel remains coherent across
the measurement duration. It is practically impossible to attain
large channel coherence times in our measurement scenario. This
reflects in our analysis in Figure 3 where in several cases the the-
oretical proportionality of BER to bits/symbol is not held. The
802.11b rates seem to be robust even at low RSSI levels but 802.11g
rates start becoming useful when the RSSI is above 20 dB. It is
clear that an RAA should use OFDM rates at higher RSSI levels
and DSSS rates at lower RSSI levels.

3.2 Predicting RSSI

Predicting the channel quality is critical in determining the best
bit rate. The study of temporal correlation between RSSI values
under vehicular mobility is useful in this regard. To study this, we
use the autocorrelation in the time series of RSSIs to estimate how
well the recent RSSI values can predict the RSSI values to be seen
in the near future.

The prediction model can use one of several standard techniques
such as autoregressive (AR) model, moving average (MA) model,
autoregressive moving average (ARMA) model, etc. In [10] we
have used the AR model successfully to predict the future through-
puts based on throughput measurements in the past in a similar ve-
hicular environment. Thus, we limit our analysis to the AR model.

For this analysis we consider a time series of average RSSI val-
ues over 500 ms time slots. We evaluate the performance of the
AR(k) model for several values of k to see the quality of estima-



["AR(k) Model | MSE(Y cs0)/VAR(Y) |

AR(]) 0.932
AR(2) 0.928
AR(4) 0.924
AR(R) 0.922
AR(16) 0.920

Table 1: Prediction accuracy using AR(k) model.

Avg. Prediction Error (dB)

0 . . . . .
0 1 2 3 4 5 6

Avg. Standard Deviation of Observed RSSI in a Time Slot (dB)

Figure 4: Prediction error increases with increasing standard
deviation of the RSSI values within a time slot.

tion. Table 1 shows the mean-squared estimation error divided by
the sample variance (M SE/ s%). This is based on a standard AR(k)
fitting method used in the mathematical software GNU Octave,
version 3.0.5[2], when applied on the average RSSI per time
slot time series as described above.! Note that there is very little
difference with different values of k. This implies that the simplest
AR(1) model can provide us with a good prediction of the average
RSSI in the next 500 ms time slot.

It is interesting to study whether a higher variability in the RSSI
values within a time slot leads to better prediction of the RSSI val-
ues in the next time slot. In Figure 4 we plot the standard deviation
of the RSSI values within a time slot versus the error between the
observed and the predicted RSSI of the next time slot. For this anal-
ysis we consider only those time slots where we have at least 10
RSSI values in order to obtain statistically meaningful results. The
predicted RSSI in this case is determined using the AR(1) model
described above. We see that as the standard deviation increases
prediction error also increases. We consider an error of 3 dB or
higher as significant. A lower difference is not likely to influence
the bit error rate appreciably as per Figure 3. Note that the error is
3 dB when the standard deviation is approximately 3 dB.

Figure 5 shows the CDF of the standard deviation of RSSI val-
ues within each 500 ms time slot. Again, only those time slots are
considered where we have at least 10 RSSI values. Notice that in
approximately 90% of the cases the standard deviation is within
3 dB indicating that the prediction error will be within 3 dB. From
this we conclude that in 90% of the cases the predictability of RSSI
using the AR(1) model is acceptable for the purpose of a rate selec-
tion mechanism.

'If 2; is the average RSSI at the t-th time slot, the AR(k) model
estimates x; as ¥y = c+ Zle ¢ix¢—; + €, where c is a constant,

¢;’s are the parameters of the model, and ¢; is white noise. Each
time slot is considered to be 500 ms.
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Figure 5: CDF of standard deviation computed over RSSI val-
ues in 500 ms time intervals.

[RSSIRange | AGGRO MRR Chain | SAFE MRR Chain |

Under 20dB 11,55,2,1 11,1, 1,1
20-28 dB 48,36, 11, 1 48,11,5.5,1
Over 28 dB 54,48, 36, 1 54,11,55,1

Table 2: Rates in the Multi-Rate Retry array for BRAVE. Each
rate is attempted only once. SAF E mode is used in case the
standard deviation of RSSI values in the previous time slot is
more than 3 dB.

4. THE BRAVE PROTOCOL

The BRAVE (Bit-Rate Adaptation in Vehicular Environments)
protocol makes use of the popular Madwifi device driver [4]. The
Madwifi Hardware Abstraction Layer (HAL) provides the capabil-
ity of multi-rate retry (MRR). The MRR array can be populated
with up to four different rates and the number of retry attempts for
each rate. These rates are to be attempted sequentially for the given
number of times until ACK is received or the total number of retries
is exhausted. In the latter case the frame is dropped.

BRAVE selects bit rates for outgoing frames based on the RSSI
values of the previously received ACKs. It makes use of the MRR
array by appropriately populating the rates that should be attempted.
‘We now describe the operation of BRAVE.

The BRAVE protocol operates in two modes — AGGRO (ag-
gressive) and SAF'E (conservative). The AGG RO mode is used
when the predictability of future RSSI values is good and the SAF' E
mode is used when the predictability is poor. Based on the analysis
in the previous section, the standard deviation of prior RSSI values
is used as an indicator of predictability.

From Figure 3 one can deduce that at RSSI levels below 20 dB
the 802.11b (DSSS) rates provide the highest throughputs and above
20 dB the 802.11g (OFDM) rates provide the highest throughputs.
Table 2 shows the rates used by BRAVE in both the AGG RO and
SAFE modes at different RSSI levels. For the AGG RO mode,
the three rates that provide the highest throughput at every RSSI
level make up the first three elements of the MRR array. The fourth
element is always chosen to be the base rate of 1 Mbps as this
rate has the lowest error rate at any RSSI level. For the SAFFE
mode, BRAVE sets the first MRR array element as the rate that
provides the best throughput from the entire rate set and the re-
maining elements are chosen from the 802.11b rate set. This is be-
cause 802.11b rates show higher resilience to frame loss. Overall,
the BRAVE protocol works as follow.



1. BRAVE makes rate adaptation decisions every time slot (500 ms).

2. At startup, BRAVE uses the SAF E mode and assumes the
average RSSI over the previous time slot to be 0.

3. If at least 10 ACKSs are received in the previous time slot
of 500 ms and the standard deviation of the RSSI values in
the last slot is less than 3, BRAVE switches to the AGG RO
mode. Otherwise the mode remains as SAF' E.

4. Depending on the average RSSI in the previous time slot and
the mode of operation, the MRR array is populated with val-
ues from Table 2. Each rate is tried only once.

In its current implementation BRAVE uses static RSSI threshold
levels (as in Table 2) based on prior analysis with data collected
using the CycleRate algorithm described in Section 3.1. Our ex-
pectation is that a training similar to the above needs to be done on
a per Metro-area WiFi network basis to create a base line. This is
feasible as the APs belonging to a network deployment tend to be
identically configured both in hardware and software. Such a train-
ing component can be potentially incorporated within the BRAVE
protocol itself.

S. EVALUATION

In this section we compare BRAVE with four other RAAs. They
will be described momentarily. All experiments are done on the
9 mile stretch of road shown in Figure 1 over multiple drives, each
drive using one specific RAA. The AP density in this stretch of the
road is quite high. The experimental setup is the same as described
in Section 2. Unfortunately, the vehicular experiments are not re-
peatable, as it is virtually impossible to ensure that the vehicle is
driven exactly at the same speed at every location on the road on
the repeated drives. Thus, the wireless link quality and AP associa-
tions vary differently across time for different drives. It is possible
to ‘ride out’ the impact of this variability by using a very large sam-
ple size for the RAAs (i.e., many drives). However, this would be
an enormous experimental effort given that several RAAs are to be
evaluated. Thus, a different evaluation method is used.

Table 3 shows the performance of each of the algorithms under
conditions of good and poor link quality. Link quality is considered
to be good if the RSSI is 20 dB or higher and considered to be
poor otherwise. We show the usage percentage for each rate and
the percentage of times each rate is successful. This RSSI-based
grouping allows us to evaluate how an algorithm performs when
faced with different channel conditions.

In the subsections below we describe and evaluate each of the
algorithms used in this analysis.

5.1 SampleRate

SampleRate [21] is a frame-based RAA. It is the default RAA in
Madwifi. SampleRate adapts rates based on transmission statistics
over a sliding window. The transmission time for a frame is defined
as the time to send the frame successfully. This includes time for
retransmissions and backoffs. The bit rate chosen is the one that
achieved the smallest average transmission time in the last sam-
pling period of 10 seconds. This way, SampleRate tries to achieve
the best average throughput in the long term. SampleRate starts
transmitting at the highest rate and decreases the rate immediately
if it experiences four consecutive transmission failures. To explore
other rates that could provide better transmission times, SampleR-
ate randomly selects the rate from the set of rates whose average
transmission time is less than the average lossless transmission time
of the rate in use, as the rate for every tenth frame. Also those rates
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that have experienced 4 consecutive transmission failures are ex-
cluded from this sampling.

From the above description it can be easily deduced that Sam-
pleRate is not the ideal choice for highly dynamic channel condi-
tions. The sampling period of 10 seconds is too large given the
highly dynamic nature of the vehicular wireless channel. Also, a
random loss of a probe packet which is non-reflective of the chan-
nel conditions proves to be costly to SampleRate since the statis-
tics for the probed bit-rates are built slowly — alternate rates are
probed at every tenth packet. This makes SampleRate prone to
under-selecting rates.

From Table 3 we can see that even when the link quality is
good, SampleRate relies heavily on the 11 Mbps and 5.5 Mbps bit
rates. When it does choose higher OFDM bit rates (24 Mbps and
36 Mbps), the link quality tends to be excellent. This is highlighted
by the fact that 83.2% and 87.9% of packets sent at these bit rates
receive link layer ACKs. SampleRate is also quite slow in react-
ing to a drop in link quality. It sends out about 40% of its packets
at rates above 11 Mbps even when very few packets are actually
acknowledged. Thus, we conclude that SampleRate is slow in re-
acting to changing channel conditions, and tends to under-select bit
rates when the link quality is good and over-select bit rates when
the link quality is poor.

5.2 AMRR

The Adaptive Multirate Retry (AMRR) algorithm [20] is also a
frame-based algorithm whose implementation is a part of Madwifi.
It also adapts its rate based on transmission statistics but the pe-
riod over which rate selection decisions are made is shorter. AMRR
increases the current bit rate by one if in each of the last 10 succes-
sive 500 ms time-slots at least 10 packets were transmitted and less
than 10% of packet transmissions failed. The bit rate is decreased
by one if more than 33% of the packets fail in a 500 ms time slot.
In AMRR the selected rate and two rates below it constitute the first
3 elements of the MRR chain. The fourth rate is set to 1 Mbps. One
transmission attempt is made per rate in the MRR chain.

Referring to Table 3 AMRR tends to be very aggressive in rate
selection when the link is good. The three highest rates are se-
lected over 72% of times. However, when the link quality is poor,
the same aggressiveness tends to pull it away from the more sta-
ble DSSS rates to higher OFDM rates that are not as successful.
Close to half of the packets are sent at rates higher than 11 Mbps
and almost none of these packets are successfully delivered. Hence
overall, AMRR is guilty of over-selecting rates.

5.3 CHARM

Channel-aware Rate Adaptation Algorithm (CHARM) [18] is an
SNR based rate adaptation algorithm. CHARM uses channel reci-
procity to obtain channel information. The technique is based on
predicting the path loss to a receiver in the near future by passively
overhearing messages sent by the receiver. CHARM automatically
adapts the signal thresholds that are used by the transmitter to se-
lect the transmission rate. This adaptation is however very slow —
in the order of a few seconds.

CHARM is known to outperform popular frame based RAAs like
SampleRate in indoor environments [18]. However in outdoor en-
vironments at vehicular speeds CHARM performs very poorly. Our
experiments show that CHARM continues to predict the link quality
as being excellent even when the link quality is very poor in real-
ity. Referring to Table 3, in case the link quality is good, CHARM
almost exclusively uses the highest available bit rate. However,
CHARM 1is very slow in reacting to deteriorating link quality and



SampleRate AMRR CHARM
Bit Rate 9% Used 9% ACKed % Used 9% ACKed % Used 9% ACKed
(Mbps) [ Good | Poor | Good | Poor || Good | Poor | Good | Poor || Good | Poor [ Good | Poor
link link link link link link link link link link link link
1 1.61 | 24.0 | 59.8 | 5.80 361 | 439 | 593 16.2 0.03 | 0.83 [ 597 | 0.44
2 1.89 | 6.73 | 746 | 209 0.75 1.52 | 66.7 | 21.7 0.00 | 0.16 0 0.78
5.5 18.0 | 123 | 86.0 18.4 1.12 | 1.04 | 79.6 | 50.1 0.02 | 0.51 0 0.36
6 725 | 023 | 90.6 1.40 1.67 | 3.51 559 | 0.42 0 0 0 0
9 0.02 | 277 | 3.37 0 1.87 1.33 | 356 0 0 0 0 0
11 26.7 11.6 | 79.1 14.7 4.89 | 1.52 | 84.0 | 23.7 0.03 1.05 0 0.08
12 7.36 | 2.19 | 77.1 0.15 5.09 | 7.58 | 63.8 | 0.04 0 0 0 0
18 385 | 5.60 | 77.3 0 3.19 | 10.1 | 60.8 0 0.05 | 472 0 0
24 953 | 7.05 | 832 0 5.01 10.5 | 63.3 0 0.07 | 473 | 0.74 0
36 14.8 11.3 | 879 0 7.31 18.8 | 60.7 0 0.09 | 3.99 0 0
48 522 | 735 | 822 0 10.8 0 71.7 0 0.00 | 6.24 0 0
54 354 | 872 | 73.8 | 0.03 54.5 0 92.2 0 99.6 | 777 | 49.7 | 0.52
RapidSample BRAV E
Bit Rate 9% Used 9% ACKed % Used 9% ACKed

(Mbps) [ Good | Poor | Good | Poor || Good | Poor | Good | Poor
link link link link link link link link

1 8.56 | 348 | 859 [ 63.4 0 0.04 0 70
2 6.04 | 381 | 96.6 | 83.7 0.05 | 2.20 100 | 99.6
5.5 7.65 | 3.84 | 98.1 | 83.5 0.71 19.6 | 93.0 | 88.7
6 7.06 | 3.72 | 56.1 | 0.65 0 0 0 0
9 778 | 3.26 | 543 | 0.51 0 0 0 0
11 839 | 379 | 97.8 | 759 550 | 772 | 869 | 745
12 7.08 | 3.15 | 60.8 | 0.83 0 0 0 0
18 690 | 394 | 61.5 [ 0.71 0 0 0 0
24 7.67 | 3.88 | 61.5 | 0.53 0 0 0 0
36 7775 | 6.69 | 59.4 | 0.25 1.66 | 0.28 | 80.7 | 22.1
48 937 | 102 | 542 | 0.62 9.25 | 033 | 82.1 16.0
54 156 | 187 | 50.2 | 0.35 82.8 | 035 | 88.8 [ 4.70

Table 3: Physical layer bit rates used for different RAAs. When the RSSI is below 20 dB the link is classified as being a ‘Poor link’.
Otherwise, it is classified as a ‘Good link’. The percentage of transmissions using specific bit rates and percentage of transmissions
ACKed are shown.
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continues to use the highest bit rate over three quarters of the time
even when the link quality deteriorates.

5.4 RapidSample

RapidSample [23] is a frame-based algorithm that has been de-
veloped specifically for mobile environments. The algorithm starts
with the fastest bit rate. If a packet fails to get a link layer ACK it
records the time of failure and switches to the next lower bit rate.
After success at a particular bit rate for more than 5 ms the sender
attempts to sample the highest bit rate that has not failed in the last
10 ms and there is no lower bit rate that has failed in the last 10 ms.
If the faster rate fails, it reverts to the original bit rate; otherwise it
adopts the new bit rate.

We have implemented RapidSample as a Madwifi rate adaptation
module. It is important to note that RapidSample does not rely on
the MRR mechanism and hence there are no retries at the hardware
level. Every packet loss is reported to the algorithm and a different
rate selection is made. We reflect this in our implementation by dis-
abling multi-rate retry in Madwifi. This makes RapidSample very
succeptible to packet losses that happen frequently in outdoor mo-
bile environments. Also, RapidSample is tuned for indoor channel
coherence times (approximately 10 ms) and walking speeds. Out-
door channel coherence time is much shorter.

From Table 3, we see that RapidSample uses all bit rates approx-
imately equally when the link quality is good. This is unlike other
RAAs which tend to converge at one stable rate. This highlights the
problem of being overly sensitive to transmission failures which is
compounded by the absence of multi-rate retry capability. During
poor link conditions RapidSample, tends to converge at the lowest
and the highest bit rates. Approximately half of transmissions hap-
pen at these two rates. The convergence at 1 Mbps bit rate can be
explained by the increased number of packet losses due to poor link
quality. The convergence at 54 Mbps bit rate can be explained by
the tendency of the algorithm to jump to the highest bit rate that has
not failed in the last 10 ms.

5.5 BRAVE

We implement the proposed BRAVE protocol as a rate adapta-
tion module in the Madwifi driver (version 0.9.4). The operation
of the BRAVE protocol has been previously described in Section 4.
BRAVE correctly estimates the link quality and appropriately se-
lects bit rates for outgoing packets.

From Table 3 note that BRAVE selects the highest 3 bit rates al-
most 93% of the times when the link quality is good. Also the pack-
ets sent at these rates are ACKed with a very high probability. In
case of poor link quality, BRAVE selects the loss resilient 802.11b
bit rates around 99% of the times. The link quality is overestimated
less than 1

6. VEHICULAR LINK EMULATION

We mentioned previously the non-repeatability of vehicular ex-
periments that prevented us from doing a real head-to-head com-
parison of RAAs. In this section we describe an indoor emulation
environment that can vary wireless link qualities in a repeatable
fashion. Though realistic outdoor channels cannot be emulated,
variability in the link qualities in a repeatable fashion still is quite
useful for a first-order comparison of RAAs. The essential idea is
to use a software radio as a programmable noise generator.

6.1 Emulation Setup

The emulation setup as shown in Figure 6 consists of two 802.11
devices in the ‘ad hoc’ mode placed 1 meter apart. This ensures
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Figure 6: Emulation setup showing two WiFi nodes 1 meter
apart with the USRP noise generator exactly in the middle.
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Figure 7: RSSI of received ACKs with changing output power
of noise generator.

that the nominal link quality is excellent between the two nodes.
We use a Universal Software Radio Peripheral (USRP) [1] device
in between the two WiFi nodes acting as a noise generator. The
USRP has a 2.4GHz radio transceiver and is programmed to gener-
ate Gaussian white noise over a 4 MHz bandwidth centered around
the center frequency of the chosen 802.11 channel. Even though
the channel width used by the USRP is small — only 4 MHz com-
pared to 20 MHz for 802.11 — the noise floor at the 802.11 receiver
can still be raised enough by increasing the transmit power of the
noise generator such that the link quality is impacted adversely.

The output power from the noise generator can be increased by
programmatically increasing the amplitude of the noise. This pro-
gressively worsens the link quality between the two WiFi nodes.
Figure 7 shows the effect of increasing the output power from the
noise generator on RSSI of the received ACKs at the transmitter
validating that the generated noise has an intended effect. Notice
that the RSSI decreases linearly with increasing output power from
the noise generator.

6.2 Emulating Drives

We use the emulation setup described in the previous section to
emulate a 50 km drive for each RAA. We assume that 50 APs are
placed at regular intervals along the drive. Our goal is to vary the
noise generated by the USRP such that the link quality between the



two WiFi nodes will be similar to what it would be for an actual
drive at various points of time.

Choosing an appropriate propagation model is important for the
emulation set up. We note that since the vehicular antenna height
is short, we need to use near-ground propagation models that take
into account effects due to the lack of Fresnel zone clearance. We
choose the model developed and validated for 802.11 signal prop-
agation in the 2.4 GHz band as reported in [13]. The model is as
follows:

Pioss = 40L0g10D =+ QOLOgloF — 20Loglohthr,

where: P55 is the path loss in dB, D is the distance in kilome-
ters, F is the frequency in MHz, and h; and h, are the heights of
the transmitting and receiving antennas in meters.

This model estimates the path loss for 802.11 WLAN line-of-
sight links with antenna between 1 and 2.5 meters in height. In our
emulation we assume the APs to be at a height of 2.5 m and the
vehicular client to be at a height of 1 m.

The output power from the noise generator is varied using a
script in order to emulate the changing distance from the APs at
different driving speeds. Three different driving speeds are emu-
lated in this fashion — 5 m/s (or 18 km/hr), 10 m/s (or 36 km/hr) and
15 m/s (or 54 km/hr). The speed remains constant during the emu-
lation. The ‘ad hoc’ mode is used specifically to ensure that there
is no issue with AP-client association and there is no handoff. This
ensures that there is no influence from any handoff protocol on the
overall throughput performance. Note that use of ‘infrastructure’
mode instead of ‘ad hoc’ mode may reduce the repeatability of the
emulation. The AP-client association messages are broadcast in
nature and thus are highly susceptible to losses. Hence the handoff
delays can vary widely during repeat experiments. The same sat-
urated UDP traffic is used as before and the received throughput is
plotted for each RAA for different speeds (see Figure 8). Note that
this emulation perhaps over-estimates the absolute performance as
the experiments are stationary and indoors, and no handoff delay
is modeled. Its sole use is relative comparison between different
RAAs. We see that BRAVE still performs the best. The rest of the
RAAs perform much worse, specifically at higher vehicular speeds.

At slow speeds AMRR seems to be better than SampleRate be-
cause of its aggressive nature. See the relevant discussion in Sec-
tion V. This over-aggressiveness hurts AMRR at higher speeds since
now it over-selects bit rates. SampleRate’s nature of under-selecting

bit rates helps it in competition with AMRR at higher speeds. CHARM

over-selects bit rates very aggressively and mostly relies on the
54 Mbps bit rate even when the link quality deteriorates. With the
rapidly changing link quality experienced under vehicular mobility,
CHARM incurs heavy retransmissions and packet losses hurting its
performance significantly.

7. RELATED WORK
7.1 Frame Based Rate Adaptation

Frame based rate adaptation algorithms rely on link layer frame
delivery statistics.

Auto Rate Fallback (ARF) [19] is a simple rate adaptation algo-
rithm proposed in 1996 that drops the transmission rate on succes-
sive packet losses and increases the rate on successive successful
packet transmissions. Since then many other rate adaptation algo-
rithms have been proposed. Adaptive Auto Rate Fallback (AARF)
[20] improves upon ARF by dynamically choosing the threshold
for increasing and decreasing the bitrate instead of assuming a fixed
value. This adds a measure of stability to the protocol. ONOE [5]
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Figure 8: Throughput performance of rate adaptation algo-
rithms in the 50 km emulated drive for three different speeds.

is another simple but popular algorithm whose implementation is
available in the Madwifi driver code. It decreases the bitrate when
packets need at least 1 retry on average and increases it if less than
10% of the packets require retransmissions.

SampleRate [21] and Adaptive Multi-Rate Retry (AMRR) [20]
are the other two popular algorithms whose implemenations are
available in the Madwifi driver. We have previously described their
operation in Sections 5.1 and 5.2.

All the above algorithms are designed for indoor WiFi access
scenarios where channel conditions are relatively stable. In out-
door vehicular WiFi access scenarios the packet loss rates and vari-
ance in the channel conditions are much higher and the frame based
algorithms tend to either under-estimate or over-estimate the link
quality depending on the sizes of their estimation windows and rate
adaptation procedures.

7.2 SNR Based Rate Adaptation

In case of signal-to-noise ratio (SNR) based rate adaptation algo-
rithms the bit-rate adaptation is dependent on PHY layer statistics
like RSSI.

Receiver Based AutoRate (RBAR) [15] is an SNR based scheme
that relies on the RTS/CTS mechanism and a pre-computed wire-
less channel model to choose an appropriate bit-rate. In this scheme,
the transmitter sends an RTS frame before every data frame and the
receiver measures the SNR and compares it with SNR thresholds
from the channel model to select an appropriate bit-rate. This bit-
rate is conveyed to the transmitter as part of the CTS frame. The
obvious downside of this scheme is the overhead introduced by the
RTS/CTS frames.

CHARM [18] is another SNR based algorithm which uses chan-
nel reciprocity to obtain channel information while avoiding the
RTS/CTS overhead. We have already described its operation in
Section 5.3.

7.3 Rate Adaptation in Mobile Environments

A recent paper [23] has proposed a hint-aware rate selection al-
gorithm which explores the possibility of using mobility hints for
bit-rate selection. They propose switching between the RapidSam-
ple algorithm (described in Section 5.4) and the SampleRate al-
gorithm (described in Section 5.1) based on whether the client is
mobile or not, respectively. Our analysis in Section 5.4 shows that
in outdoor vehicular environments RapidSample under-performs in
comparison to all other algorithms.

The CARS algorithm proposed in [22] also accepts sensor hints
to make rate selection decisions. Unlike the hint-aware rate selec-



tion algorithm in [23], CARS has been designed for out-door ve-
hicular WiFi access scenarios. In the CARS scheme, the commu-
nicating nodes exchange GPS locations in order to track distance
and relative speeds between the two nodes. This forms the current
“context”. Each node maintains a context to link quality mapping
and fast rate adaptation is performed based on the current context.
However, this scheme has the drawback of requiring a lot of train-
ing data to be collected to account for every possible context.

Camp and Knightly [9] have proposed a cross-layer framework
for rate adaptation in vehicular networks. The study concludes
that both frame-based and SNR-based algorithms suffer from the
smaller channel coherence time in out-door vehicular environments
and training SNR-based protocols according to the environment’s
coherence time can improve throughput performance.

SoftRate [24] is a bit rate adaptation algorithm that uses physical
layer hints to make rate adaptation decisions. SoftRate is known
to out-perform most RAAs in slow and very fast fading scenarios,
but tends to suffer under intermediate mobility where the channel
changes every few packets.

The Strider [14] system is designed to achieve optimal rate adap-
tation by the use of a novel code which is rateless and collision-
resilient. The current implementation of this system is on a GNU
Radio platform and only uses 6.25 MHz width instead of the full
20 MHz width required for WiFi.

8. CONCLUSIONS

The popularity of outdoor metro-scale WiFi networks is growing
and there is a new interest in off-loading cellular data to WiFi net-
works for cost and/or congestion savings. Thus, optimizing WiFi
access from moving vehicles continues to be an important issue.
Physical layer rate selection is a large component of this optimiza-
tion. However, all rate adaptation algorithms for WiFi networks
have been studied only indoors with fairly static scenarios or with
very limited mobility (walking speeds). These algorithms often
uses a significant amount of history (over several seconds) to make
a rate selection decision, rendering their use fairly limited in very
dynamic scenarios under vehicular mobility. We have addressed
this problem by developing BRAVE, a rate adaptation algorithm that
uses some amount of training to understand SNR versus error rate
performance and then dynamically uses only a brief (sub-second)
history to determine the rate to be used. BRAVE has been compared
with four other prominent rate adaptation algorithms in a metro-
scale WiFi deployment exposing the advantages of using BRAVE
vis-a-vis the other protocols. A head-to-head comparison in an em-
ulation environment finally establishes its superiority, specifically
at higher vehicular speeds.
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