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Ahstract-The volume of data in broadband cellular network 
is growing exponentially. However, studies have indicated the 
traffic load on the cellular base stations varies significantly over 
time. This gives an opportunity to accommodate additional traffic 
with the same network capacity if some of the traffic (e.g., p2p, 
cloud sync) can be amenable to 'delayed scheduling' without 
hurting the user experience any significantly. In this paper, we 
study various algorithmic problems that can arise in this context. 
Using a model where all flows can have certain flexibility in 
scheduling (via use of a 'deadline'), we develop optimal or near­
optimal algorithms to determine the minimum network capacity 
for two different models. We also develop various semi-online and 
online algorithms for online scheduling of flows, and analyze their 
performance. In particular, even though the online scheduling 
problem is shown to be intractable, our proposed semi-online 
algorithm can schedule flows optimally if aided by historical data 
and slightly additional network capacity over the optimal. Finally, 
using flow level traffic traces collected at the core of a commer­
cially operated cellular network, we evaluate the effectiveness 
of our techniques. Evaluations show that delayed scheduling, 
when done efficiently (using an offline optimal algorithm), can 
accommodate the same traffic with much lower network capacity 
(up to 50% less) with only modest delays. While such an optimal 
solution needs an offline approach, we demonstrate that online 
scheduling can be almost equally effective when historical traffic 
data can be exploited for estimation purposes. 

I. Introduction 

Broadband cellular networks are emerging to be the most 
common means for mobile data access worldwide. Predictions 
from industry analysts indicate that the volume of data through 
cellular data networks will increase exponentially in near 
future [1]. The impact of this data volume on the opera­
tors' networks has been carefully analyzed [3]. It is widely 
anticipated that severe congestion in the cellular network 
infrastructure is in the offing if not already happening. 

The research community has been responding to this chal­
lenge using various means. Moving from macro-cells to femto­
cells [6] or automatic offloading traffic to WiFi networks [l7] 
have been widely considered. Operators are adding capacity 
by employing more spectrally-efficient technologies such as 
WiMax or LTE, adding more spectrum and macro-cells. But 
these are very capital intensive processes. Spectrum deregu­
lation is also being considered by policy makers [5]. From 
a more immediate and practical standpoint, cellular operators 
have started adding pressure on consumers to reduce traffic 
load by moving away from flat-rate to usage-based pricing 
model [2], and more recently, throttling data speeds of high 
volume users [29]. While such strategies can encourage the 
consumer to optimize usage, they are ultimately detrimental 
to widespread adoption of cellular networks by discouraging 
use of bandwidth hungry applications on mobile devices. 

Delayed Scheduling. We consider an alternative approach that 
can be deployed without any additional capital cost while only 
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minimally hurting - if at all - user experience. Several recent 
studies have reported that the aggregate cellular network traffic 
load in a region exhibits a diurnal behavior with peak traffic 
appearing during mid-day and very low volumes during the 
night [9], [22]. Individual base station traffic also fluctuates 
widely during the day [22]. Thus, if certain lower-priority 
traffic can be deferred from peak times to the off-peak times, 
the congestion issue can be easily alleviated. Many traffic types 
are amenable to such deferred scheduling. Examples include 
large downloads such as apps, e-books, videos/pictures, or 
sync services such as email or cloud-based data. Often, the 
originating application type (e.g., p2p) is a sufficient hint 
that a flow can be deferred. At other times, a hint from the 
programmer or directly from the user may be needed to decide 
on such flows. Regardless of such mechanics, it is conceivable 
that a significant reduction of congestion is possible by such 
deferral. The operator no longer has to design the network for 
the peak-demand and/or can accommodate much more traffic 
than is currently possible, without hurting user experience any 
significantly. 
Model. In this paper, we address various algorithmic problems 
that arise in the context of the above philosophy of allowing 
the flows to be deferred. The basic idea is to have a 'deadline' 
associated with every flow indicating by when the flow should 
be completed. The deadline provides a way to specify priority 
or scheduling laxity. It can be specified manually or via a 
profiling mechanism at the application layer depending on 
the type and size of the flow and probably other contextual 
information. 

Each flow has an associated location, which determines the 
set of base stations (BS) that can serve the flow. This exploits 
the fact that the BSes may have overlapped coverage areas. 
This is a very reasonable assumption in dense deployments. 
Recent papers on energy savings (e.g., [9], [10]) exploit 
this fact to turn down BSes to save energy while providing 
adequate coverage. 

We allow a scheduled flow to be preempted to accommodate 
other (perhaps, more urgent) flows, and rescheduled as many 
times as necessary, perhaps at neighboring BSes that also 
covers the location of the flow. Any form of 'rescheduling,' 
however, only happens at flow arrival or completion (schedul­
ing epoch), allowing such scheduling to work at a higher 
layer and at a much longer time scale than and independent 

of the link layer scheduling at the air interface. 1 The actual 
instantaneous transmission bit rate for the flow could be 
variable and dependent on the actual radio resource (e.g., 
bandwidth) allocated at the air interface and the SNR at the 
mobile client. 
Problems Addressed. With the above modeling approach, we 

[The median flow inter-arrival time per BS in the data set we are using 
(described later) is roughly around lOOms to give the reader an idea about 
the time-scale. 
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address the following problems: 

• Determine the minimum capacity needed for the BSes 
to schedule all the given flows successfully within their 
respective deadlines. This problem is addressed in two 
different contexts: all BSes have the same (uniform) 
capacity or non-uniform capacities. For the former, we 
design a polynomial-time optimal algorithm, while for 
the latter, we show the problem to be NP-hard and design 
a near-optimal algorithm. 

• Given the capacity of BSes, schedule the flows in an 
online manner, so as to maximize the number of flows 
finished before their deadline. We show the problem to 
be NP-hard (even, in its offline form). Thus, we consider 
a special (and more pertinent) case of the problem, and 
design online and semi-online algorithms with provable 
performance guarantees. 

The focus of our paper is to provide efficient solutions for 
the above problems, under above reasonable modeling assump­
tions, and to demonstrate potential performance improvements 
via use of real data (cellular network traces). Encouraged by 
the results here, our future work will focus on investigating 
the engineering issues of deploying such mechanisms in a real 
network. 

II. Model, Problem Formulation, and Related Work 

In this section, we describe our model of the cellular 
network and flow arrivals, give a formal description of the 
problems addressed, and discuss related work. 

A. Model 

Informally, we address the problem of optlmlZlng peak 
capacity of cellular base stations (BS), when we have the 
flexibility of delaying (within certain constraints) the incoming 
flows. Below, we explain our model of the cellular network, 
cellular BS, and flows. 

Cellular Network and Base Station. A cellular network 
infrastructure consists of a number of cellular base stations 

(BS) distributed in a two-dimensional geographic region. Each 
BS is associated with a coverage region of arbitrary shape and 
size. 

Base Station Capacity. Each BS is associated with a capacity. 

The capacity is best looked upon as the number of channels 
available to serve the flows. But, in general, the notion of 
capacity is some measure of the BS's resources to handle 
the data demands, e.g., amount of bandwidth or number of 
channels.2 Capacities may or may not be uniform across BSes; 
in this paper, we consider both settings. The optimization 
objectives considered in our paper are to minimize (i) the 
uniform capacity, or (ii) the sum of non-uniform capacities. 

Flows. Each flow is a sequential stream of data packets, 
typically semantically related, similar to a TCP or UDP socket 
connection. For simplicity and clarity, we assume flows and 
tower capacities to be downlink only; incorporating uplink 

2We implicitly assume that a BS's capacity is independent of the load and 
capacity of the neighboring BSes. 
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flows and capacItIes into your model is straightforward.3 

Each flow i arrives in the system at a particular time ai 
and geographic location li, is of a certain size (number of 
bits/packets) Si, and has a deadline di associated with it. The 
deadline is the time by which the entire flow must be served 
(as defined below). Note that the deadline value can be used 
to make a flow "non-deferrable." 

Mobility. For simplicity of presentation, we assume that the 
location Ii remains static (i.e., does not change during its 
lifetime, even if it is delayed). Our developed techniques easily 
generalize to the case when the location Ii may change over 
time, which corresponds to the setting wherein the originating 
user of the flow is mobile. We discuss generalization of our 
techniques to mobile users in the end of section III. 

Base Station Serving a Flow; Transmission Rates (tijt. A 
flow i arriving a location Ii can be served by any BS j whose 
coverage region contains Ii. A BS serves a flow in its coverage 
region using exactly one unit of its capacity (e.g., one of its 
channels). We will relax this assumption, i.e., allow a flow to 
be served using an arbitrary fraction of a BS capacity, towards 
the end of Section III and IV. Also, the rate at which a flow i is 
served by BS j at time t is given by the bit-rate parameter (tijt; 
this parameter essentially captures the variable link quality 
dependent bit rate of the downlink.4 

Preemption and Parallelism. To reflect a practical setting, in 
our model, we allow a flow being served to be preempted 

by another flow. The preempted flow can be resumed later, 
perhaps, at another BS. Thus, essentially, a flow can be broken 
into parts and each part served at ditlerent BSess at ditlerent 
times. However, we do not permit "parallelism," i.e., different 
parts of the same flow must be served sequentially. 

Completely Served. A flow is considered completely served if 
all the parts of it are finished before the deadline. 

Model Assumptions and Justifications. We have used some 
simplifying assumptions to make the problem tractable and to 
facilitate evaluation over the available network traces which 
have limited amount of information. We assume that each BS's 
capacity is constant and independent of the neighboring BSes' 
capacities. Interference management across BSes is assumed 
to be perfect (e.g., via prior frequency planning). We assume 
that the flow size is either known or can be estimated at the 
flow arrival, and that a flow a continuous stream of packets 
rather than discontinuous bursts. We do not account for any 
overhead cost for network controlled hand-offs to move around 
loads onto different neighboring BSes. But such costs are not 
hard to account for in the optimization problem. Note that 
in our schemes such hand-offs only happen at flow arrival or 
completion times which serve as scheduling epochs. 

3To incorporate uplink flows and capacities: (i) our LP formulation of 
Section ITT and TV can be easily changed, and (ii) in Section V, we just need 
to define and use an additional concept similar to the g-capacity. See [28] for 
details. 

4Tn particular, the parameter a allows us to model the fact that neighboring 
towers may take longer to serve a flow than the original tower where the flow 
arrives. 

5We assume that a network controlled hand-off (NCHO) [19], [32] mech­
anism can be used to achieve this. 
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B. Problem Motivation, Formulations, and Contributions 

In the context of the above described model, we consider 
the following offline and online problems in this paper. The 
motivation behind the offline problems is to determine optimal 
capacity needs based on historical traffic information. They 
can also be used to future traffic growth that can be sustained 
with the existing network capacities. More importantly, our 
offline algorithms are also used to estimate "traffic indicators" 
which are useful in driving the online algorithms. 

I) Minimize Uniform Capacity (MUC). Consider a cel­
lular network consisting of BSes with given coverage 
regions, wherein each BS has a uniform capacity. Given 
the historical data on a set of flows with associated pa­
rameters, the MUC problem is to compute the minimum 
uniform capacity such that all the given flows can be 
served within their deadlines. 
In Section III, we design a polynomial-time optimal 
algorithm for the MUC problem. 

2) Minimize Total Capacity (MT C). Consider a cellular 
network consisting of BSes with given coverage regions, 
wherein different BSes may have different capacities. 
Given the historical data on a set of flows with associated 
parameters, the MTC problem is to assign capacities to 
the BSes such that all the given flows can be served 
within their deadlines, while minimizing the total sum 
of capacities. 
In Section IV, we show that MTC is NP-hard, and 
design a polynomial-time near-optimal algorithm for the 
problem. 

3) Online Scheduling of Flows (OSF). Consider a cell ular 
network consisting of BSes with given coverage regions 
and capacities (possibly, non-uniform). At any time 
instant, a flow may arrive with the associated parameters. 
The OSF problem is to schedule the flows to BSes 
in an online manner (i.e., as the flows arrive), while 
maximizing the number of flows that are completely­
served. 
In Section V, we show the above problem to be in­
tractable, and design online and semi-online algorithms 
for a certain special case of the problem which is more 
relevant in our context. 

C. Related Work 

Theoretical Studies. The offline scheduling problems 
(MUC/MTC) discussed in this paper are similar to the 
preemptive scheduling problems on identical machines with 
arrival times and deadlines with the objective of minimizing 
the number of machines. Although there is a considerable 
literature on this subject, our model has a key difference: 
ours is the first preemptive scheduling problem that uses a 
constraint on the set of machines that can schedule a job. The 
constraint makes a significant difference as many preemptive 
scheduling problems with various objective functions [26], 
[30] (including our MTC problem) are polynomial without 
such a constraint, but can become NP-hard with the constraint. 

The other key difference of our addressed problems with 
the prior literature is our unique objective of minimizing the 
number of machines that yield a valid schedule. There has been 
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a considerable amount of work on preemptive scheduling with 
various objectives such as finding a valid schedule [33], and 
on minimizing makespan [27] [24], number of late jobs [25], 
lateness [13], job-completion costs [16], etc. However, to the 
best of our knowledge, there is no work on the objective of 
minimizing the number of machines for scheduling jobs with 
arrival times, lengths, and deadlines. 

Our online scheduling problem OSF is again a preemptive 
scheduling problem of jobs with arrival times and deadlines 
on machines, with the objective of maximizing the number of 
finished jobs. This problem without the job-machine pairing 
constraint of our model, has been studied before [4], [11] for 
a number of different objective functions such as minimizing 
makespan [8], guaranteed performance [7], etc. However, the 
constraint on the set of machines a job can use makes our 
problem much different than the prior-addressed problems. 
Load Balancing in Cellular Networks Part of our work is re­
lated to the broad topic of load balancing, as we consider 
"spatial shift" of traffic flows to neighboring BSes that also 
cover a given flow. This general concept has been widely 
used at the link layer. For example, see papers on channel 
assignment, where wireless resources are redistributed rather 
than traffic [14], [20], [23]. In the same note, myriads of 
scheduling-based approaches are possible at the link layer [15], 
[18], [21], [31]. In contrast, our work reflects scheduling at a 
higher layer, scheduling at the flow level rather than at the 
packet/frame level. We thus ignore physical/link layer issues 
such as power, channels, interference and packet scheduling, 
instead focus on longer term scheduling of flows - either in 
whole or in part - assuming the capacity at the BS is largely 
independent of the traffic in the neighboring BSes. Similar 
load shifting has been used in cellular networks in the context 
of energy saving [9]. 

III. Minimizing Uniform Capacity (MUC) Problem 

In this section, we address the MUC problem. As mentioned 
before, the offline MUC problem serves the purpose of deter­
mining optimal capacity needs of a network using historical 

traffic information. In our context, we also use our offline 
algorithms to estimate "traffic indicators" to drive our online 
algorithm (as described in Section V). We design an algorithm 
based on a Linear Programing (LP) formulation, and show that 
it returns an optimal solution. 

LP Formulation, and Challenges. To define a linear program 
for the MUC problem, we need to divide the time into intervals 

(not necessarily of same size), and then, for each interval, 
determine the mapping that defines which flows are served 
by each BS. Normally, representation of such a mapping 
will require use of binary/integer variables, which are not 
allowed in a linear program. However, our model allows 
preemption of flows at any time instant - which facilitates 
representation of the mapping, since preemption allows a BS 
to serve an arbitrary fraction of a flow, within any time interval. 
In particular, we represent the mapping in terms of the time 
used by a flow at a BS for each interval. However, even 
with the above mapping, we still need to represent, for each 
interval, an actual "schedule" of flows onto BSes that satisfies 
the constraints of "non-parallelism." We will show (through 
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Lemma 2) that if intervals and linear constraints are chosen 
appropriately, then the existence of such a schedule can be 
guaranteed. In particular, we define the intervals as the time 
intervals (of possibly ditlerent sizes) between time instants of 
interest (i.e., arrival time or deadline of a flow), as formally 
defined below; the number of such intervals is polynomial in 
size of a given MUC problem. The set of equations in our LP 
formulation are defined as follows. 

Variables. Based on the above observations, we define the 
following notations and variables, for our LP formulation. 

• T = {Tl' T2, . . .  , } is the finite set of time "instants", 
where Tt is either an arrival time or a deadline of one 
of the given flows. We assume Tt's to be in increasing 
order; thus, Tt < Tt+l for all t. 

• Variables i, j, t to denote a flow, a BS, and a time instant, 
respectively. 

• Variable k to denote the uniform capacity of BSes. 
• Variable Xijt to denote the amount of time the flow i is 

served by BS j, during the time interval Tt to Tt+l. 

Equations. On the above variables, we define the following 
equations: 

I) Xijt = 0 for all t, and for all i, j, where the location Ii 
of flow i is not in the coverage region of cell j. 

2) Xijt = 0 for all j, and for all i, t where Tt < ai (the 
arrival time) or Tt 2 di (the deadline). 

3) Lt,j OCijtXijt = Si, for all i, where OCijt is the given 
bit-rate (a constant in the LP) and Si is the size of the 
i flow. This represents the constraint that all the flows 
must be completely served. 

4) Li Xijt ::.; k(Tt+l - Tt), for all j, t. This represents the 
constraint that the capacity of each BS j is at most k. 
Note that the values Tt+1 and Tt are constants. 

5) Lj Xijt ::.; (Tt+l - Tt), for all i, t. This equation 
attempts to "represent" the non-parallelism constraint, 
i.e., (a) no flow is served by two different BSes at the 
same time, and that (b) a flow is served using exactly a 
unit capacity of a BS. We will show that this equation 
is sufficient to "represent" the above two constraints, as 
shown in Lemma 2. 

6) Objective. Minimize k. 

Integral BS Capacities. Note that the above LP returns a real 
number for the uniform capacity variable k. For example, for 
the simple MUC instance where there is only one BS and 
a single flow of size 1 with a deadline of 2, the above LP 
would return the value of k as 112. However, when a flow is 
served by a unit-capacity only, a BS capacity of 112 is not 
sufficient. In particular, we need to return an integral value 
for the BS capacity (e.g., when the capacity signifies number 
of channels and each flow is served by a channel). Thus, our 
overall algorithm for the MUC problem, called the LP-based 

algorithm, is to return IKl as the final value, where K is the 
objective value returned by the above LP. We now prove the 
correctness and optimality of this algorithm. 

Proof of Correctness and Optimality. 

Lemma 1: The solution (I Kl) returned by the above LP­
based algorithm is a "valid" MUC solution, i.e., using a 
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uniform BS capacity of I Kl , it is possible to completely-serve 
all flows. 

PROOF: To prove the lemma, we need to show that an 
assignment of values to the LP variables that satisfies all the 
LP equations has a corresponding "schedule" of flows onto 
BSes (i.e., a function that maps BSes to a set of flows being 
served for each time instant) satisfying all the constraints of 
our model of serving a flow at a BS. In essence, we need to 
prove the following claim: 

For any given t, the Xijt values of an LP solution can be 

converted to a schedule of flows onto BSes such that at any 

time instant: (a) each BS is using exactly a unit of capacity 

to serve a flow, and (b) a flow is not being served by multiple 

BSes. 

Once we prove the above claim, it is easy to see that the 
proof of the lemma follows. • 

The below lemma formalizes the claim used in the proof 
above; we refer the reader to [28] for the proof. 

Lemma 2: Given a cellular network with BSes with varying 
capacities and flows. Let the capacity of BS j be kj. Consider 
a time interval [0, T]. We are given real values {Xij} for each 
flow i and BS j, signifying that the flow i must be served by 
BS j for Xij time. The {Xij} values are such that (a) for each 
BS j, Li Xij ::.; kjT, and (b) for each flow i, Lj Xij ::.; T. 
We claim that there is a schedule of flows onto the BSes (i.e., 
mapping of BSes to flows, for each time instant) such that at 
any time instant: (i) A BS uses exactly a unit capacity to serve 
a flow, and (ii) Each flow is served by at most one BS. • 

Theorem 1: The solution (IKl) returned by the above LP­
based algorithm is an optimal solution of the given MUC 
problem. 

PROOF: It is easy to see that an optimal solution to the MUC 
problem satisfies all the equations of our LP formulation. Now, 
since the LP formulation returns a solution with a minimum 
value of k, and hence, with a minimum value of Ik l, the 
theorem follows. • 

Using Non-Unit Capacity to Serve a Flow. We can easily 
generalize our model and techniques to the case wherein a flow 
can be served using an arbitrary fraction of a BS's capacity. 
Such a model depicts the situation wherein the BS's capacity 
signifies the size of the available downlink bandwidth, and a 
flow can be served using any fraction of this bandwidth. To 
generalize our algorithm to allow use of an arbitrary fraction of 
BS's capacity to serve a flow, we make the following changes 
to our LP formulation: 

• We let the variable Xijt signify the total amount of BS 
i's resources (fractional-capacity times allocated-amount­
of-time) used to serve flow j in the t th interval. 

• We change the 5th equation to: 

for all i, t, L(Xijt!k) ::.; (Tt+l - Tt). 
j 

Note that in the above model, the BS capacity can be an 
arbitrary real number. We can easily generalize Lemma 2 
for the above model, which proves the optimality of the 
solution delivered by the above modified LP, when we allow 
an arbitrary fraction of a BS's capacity to serve a flow. 
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Bounding the Capacity. In the above model, we can also 
bound the amount of capacity that can be used to serve a flow, 
e.g., a bound on the number of channels that can be used to 
serve a flow. If e is such an upper bound on the amount of 
capacity, then we change the 5th equation to: 

for all i,  t, i)xijt!e) :::; (Tt+l - Tt). 
j 

However, we need to change the LP solution K to the next 
multiple of e, i.e., return elK / e l as the final solution, for 
the proof of Lemma 2 to work. This introduces an additive 

approximation factor of e to the solution delivered by the LP­
based algorithm, i.e., if IOPTI is the optimal BS capacity then 
the solution returned by the above LP-based algorithm is at 
most IOPTI + e. 
Handling Mobility. Note that mobility of users can be mod­
eled by defining the location attribute li associated with the 
flows to be varying over time. Thus, the location attribute is 
better represented as lit for each time instant t. The above can 
be incorporated in our LP formulation as follows: 

• Firstly, the time instants of interest will now also include 
time instants when a location of a flow crosses the 
boundary of a BS's coverage region. 

• Secondly, due to the mobility, the set of BSes, whose 
coverage region contains the flow's location, changes over 
time. This can be incorporated by defining the first set of 
equations of LP appropriately, i.e., constraining Xijt to 
be zero for every i, j, t where the location of i at time t 
is not contained in the coverage region of j. 

With the above two changes, it is easy to see that the optimality 
claim of LP-based algorithm can be extended to the MUC 
problem with mobility. 

IV. Minimizing Total Capacity (MT C) Problem 

In this section, we address the MTC problem. As mentioned 
for the MUC problem, the purpose of an offline algorithm is 
to optimal the capacity needs of a cellular networks, based 
on historical traffic information. We start with showing that 
the MTC problem is NP-hard, and then modify the LP from 
the previous section to design a near-optimal algorithm for 
the MTC problem. We omit the proof of the below theorem 
(see [28]). 

Theorem 2: MTC Problem is NP-Hard. • 

Near-Optimal Algorithm For MT C Problem. Our approx­
imation algorithm is based on the LP formulation from the 
previous section. We use the same variables and notations 
from the LP of the previous section, except that we use 
{kl' k2' ... , } to denote the capacities of the various BSes, i.e., 
kj is the capacity of the lh BS. In our below LP formulation 
for MTC, the non-optimality of the LP solution comes from 
the fact that the capacity variables are treated as real numbers 
by the LP (when they are in fact positive integers). 

The LP fonnulation for the MTC problem consists of the 
same equations as the LP in the previous section for the MUC 
problem, except that the fourth and sixth set of equations are 
changed to the following respectively. 

4) Li Xijt = kj(Tt+l - Tt), for all j, t. 

5 

6) Objective. Minimize Lj kj. 
The above LP returns a solution with real values for the {kj } 

variables. We take a ceiling of these values to yield integral 
values for kj, and return that as the solution for MTC. Thus, 
if {Kj} are the values returned by the LP, we return {I Kj l } 
as the final MTC solution. Below, we show that the solution 
{lKj l} is such that Lj IKj l :::; (IOPTI + J), where IOPTI 
is the optimal total capacity and J is the total number of BSes 
in the given problem instance. 

Proof of Correctness and Near-Optimality. The following 
lemma, whose proof is similar to the proof of Lemma I, states 
that the above LP-based algorithm delivers a "valid" solution 
to a given MTC problem. 

Lemma 3: The solution, {I Kj l}, returned by the above LP­
based algorithm is a "valid" MTC solution, i.e., using the BS 
capacities {I Kj l }, it is possible to serve all flows within their 
deadlines. • 

Theorem 3: The solution, {I Kj l}, returned by the above 
LP-based algorithm is such that the sum of capacities Lj I Kj l 
is at most IOPTI + J, where IOPTI is the optimal sum of 
capacities and J is the number of BSes in the input. 

PROOF: It is easy to see that any valid solution of the 
MTC problem satisfies the equations of the LP formulation. 
Thus, IOPTI, the value of the optimal solution to the MTC 
problem is more than Lj Kj, the value of the optimal LP 
solution. Since, Lj IKj l :::; (Lj Kj)+J, we have Lj IKj l :::; 
IOPTI + J. • 

Corollary 1: If IOPTI is at least J, i.e., if each BS uses 
at least a unit capacity (in other words, no BS is turned off), 
then the above LP-based algorithm for the MTC problem is 
2-approximate. 

Using Non-Unit Capacity to Serve a Flow; Mobility. As in 
the previous section, we can generalize our techniques to allow 
use of fractional capacity of a BS to serve a flow. However, 
in the case of the MTC problem, we need to use a bound e on 
the units of capacity that can be used to serve a flow in order 
to maintain the linearity of our LP program. Thus, as before, 
we let Xijt signify the total amount of resources used in tth 
interval, and change the 5th equation to: 

for all i,  t, i)xijt!e) :::; (Tt+l - Tt). 
j 

Then, if {Kj} is the solution of the LP program, then we 
return {e I Kj / e l} as the solution of the MTC problem. With 
the above change, we can show that the total capacity of the 
modified-LP is at most IOPTI + eJ, where IOPTI is the 
optimal total capacity and J is the number of BSes in the 
input. 

Finally, mobility can be handled for the case of MTC 
problem in the similar way as was done for the case of MUC 
problem. 

V. Online Scheduling of Flows 

In this section, we consider the online version of our 
problem, i.e., given a cellular network, we want to schedule 
the arriving flows onto BSes, so as to maximize the number of 
flows that are completely served. We prove that this problem 
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is NP-hard, and consider the special case of the problem in 
which the input is such that all the flows can be completely 
served. For this special case of the problem, we design various 
semi-online and online algorithms, and prove appropriate 
performance guarantees. For sake oj clarity, we assume a BS 
uses a unit-capacity to serve a flow. We discuss relaxation of 
this assumption towards the end of the section. 

Online Scheduling of Flows (OSF). Consider a cellular net­
work consisting of BSes with given capacities and coverage­
regions. At any instant, a new flow with an associated size 
and deadline may arrive at a location. The OSF problem is to 
schedule the arriving flows in an online manner, so that the 
number of completely-served flows is maximized. Recall that 
a flow is considered completely-served if it finishes completely 
before its deadline, and note that the schedule delivered by an 
online algorithm may not completely-serve all the flows. 

We claim that the OSF problem is intractable. In fact, even 
the offline version of the problem can be shown to be NP-hard, 
as the below theorem states. We omit the proof for brevity. 

Theorem 4: Given a cellular network with possibly non­
uniform BS capacities, and flows, the problem of determining 
(even offline) a schedule of flows onto BSes so as to maximize 
the number of completely-served flows is NP-hard. • 

Online Scheduling of Completely-Servable Flows (OSCF). 

Since the above OSF problem is NP-hard, we consider the 
OSF problem wherein we restrict ourselves to "completely­
servable" instances. A completely-servable instance of an OSF 
problem is an instance for which there exists a schedule of 
given flows onto BSes such that all the flows are completely­
served. We refer to this restricted version as the OSCF 

problem. We can easily modify our LP formulation to deliver 
a schedule that completely-serves all flows of a completely­
servable instance. However, we have shown through a counter 
example that there is no optimal online-algorithm possible for 
the OSCF problem. See below theorem (proof in [28]). 

Proposition 1: The offline version of the OSCF problem 
can be solved optimally in polynomial time. 

Theorem 5: There is no online algorithm for the OSCF 
problem that, for every input instance, generates a schedule 
that completely-serves all the flows. 

In the following subsection, we design a semi-online al­
gorithm that solves the OSCF optimally when aided with 
appropriate statistics on historical traffic pattern and slightly 
additional capacity. We also present a purely-online heuristic 
that is optimal for non-overlapping coverage regions. 

A. Semi-Online and Online Algorithms 

In this section, we start with designing a semi-online algo­
rithm for the OSCF problem, which is aided by appropriate 
statistics on historical traffic patterns. We will show that our 
semi-online algorithm solves the OSCF problem optimally if 
it is allowed to use certain additional capacity (depending on 
the variations in traffic patterns) than that used by the optimal 
offline algorithm. We also design a purely online heuristic. We 
start with a few definitions. 
Covering BS; Remaining Size Sit. For a flow i, a BS j is said 
to be its covering BS if j's coverage region contains Ii, the 
location of the flow i. 

6 

Fig. I. Subregions. Here, five BSes with circular coverage-regions give rise 
to 13 subregions. 

For a flow i, the remaining size at a time instant is denoted 
by Sit and is defined as the size of the remaining (i.e., not yet 
served) part of the flow i. More formally, in terms of notations 
of previous two sections, Sit = Si - L j Lt' <t Xijt" 
Allowable Delay Wit. At a time instant t, the allowable delay 

Wij of a flow i is the maximum amount of time by which the 
remaining part of i can be delayed, while being completely­
served. More formally, Wit = (di -t) - Sit! Qit, where di is the 
deadline, Sit is the remaining size at t, and Qit = minj Qijt 
(the minimum bit-rate across BSes). 

Subregions rm. Given a 2D network region, we define a 
subregion r m as the set of points in the 2D plane that lie 
within the same set of coverage regions. Note that the set of 
subregions are disjoint. See Figure l. For circular coverage­
regions, it is easy to show that the total number of subregions 
is O(n2) where n is the number of BSes [12]. 

Traffic Indicators Jp(rm, t). Consider a cellular network 
and a set of completely-servable historical instances of flows 
{!vh, !vh, . . .  , }. Each !vIp is essentially a set of flows with 
associated parameters, such that the flows can be completely­
served by some schedule Sp. For a subregion rm, time instant 
t, and an instance !vIp, we define the traffic indicator Jp(rm, t) 
as the number of flows located in rm that are being served by 
a BS at time t, in a schedule Sp of !vIp that completely-serves 
all flows. Note that Sp can be computed in polynomial-time 
by Proposition 1. 

Semi-Online Global (SOG) Algorithm. Given cellular net­
work and a set of completely-servable historical instances 
{!vh, !vI2, . . .  , }, let Jp(rm,t) be the traffic indicators as 
defined above. Let 

g(rm, t) = rnaxp Jp(rm, t). 
The Semi-Online Global (SOG) algorithm uses the above g 
values to schedule a given online instance of flows as follows. 

At each time instant t, Jor each subregion rm, pick g(rm, t) 
(or less, if not available) flows (with non-zero remaining size) 

located in r m with least allowable delays. Let this set oj flows 

Jor the entire network be S. Find the largest subset S' oj 

S that can be scheduled onto BSes at time t; this can be 

done by finding the maximum-matching problem between S 
and "servers," where a BS oj capacity k is represented by k 
servers. Finally, we can also add more flows (that are not in 

S) to schedule, if possible. 

Performance of SOG Algorithm. We now show that the SOG 
algorithm solves the OSCF problem optimally when aided 
with slightly additional capacity, which depends upon the vari­
ation of f values across historical instances and the deviation 
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of the input instance from the historical instances. We start 
with a definition. 

Definition 1: (g-Capacities.) For a given cellular network 
and set of historical instances of flows {Ml,M2, . • .  }, we 
define the g-capacity for each BS as follows. On the given 
cellular network. consider the following instance of flows: For 
each subregion T171 and time instant t, we create g(T171' t) flows 
of size 1, arrival time t, and deadline t+ 1. We solve this MTC 
problem using the LP-based algorithm, and call the resulting 
BS capacities as the g-capacities of the BSes. 0 

Theorem 6: Given a cellular network and set of histor­
ical instances of flows {Mp}. The SaG algorithm would 
completely -serve all the flows of any instance Mp, if it uses 
the g-capacities for the BSes. 

PROOF: Consider an instance Mp. Now, by definition of 
f values, there exists a schedule Sp that schedules fp(Tm, t) 
flows (onto some BSes) from each subregion Tm at each 
instant t. Using an exchange argument, we can assume that 
the fp(T171 , t) flows being scheduled are the ones with the least 
allowable delay, for each Tm and t. Since SaG uses the g­
capacities, it has sufficient capacity to schedule g(T171 , t) flows 
for each T171 and t. Since g(T171' t) � f(Tm, t), the theorem 
follows. • 

By the above theorem, note that if we had only one historical 
instance MI, then the SaG algorithm can completely-serve all 
the flows in MI using at most n + 0 total network capacity, 
where 0 is the optimal capacity needed and n is the number of 
BSes in the network. This is hecause g(Tm, t) = 11 (Tm, t) for 
all T171, t, and hence, the sum of g-capacities is at most n + 0 
by Theorem 3. ln general, if (i) there is minimal deviation in 

fp(Tm, t) values across the given historical instances, and (ii) 
the given input to SOG is "similar-enough" to the historical 
instances, then SOG will completely-serve all the flows of the 

given input with minimal additional capacity compared to the 
optimal required. 

Semi-Online Localized (SOL) Algorithm. The above SOG 
algorithm is not localized, since it needs to solve the matching 
problem at each time instant We can also consider the simpler 
Semi-Online Localized (SOL) algorithm that instead computes 
a maximal matching greedily, which can be done in a localized 
manner. Note that any maximal matching is of size at least half 
of the maximum matching. 

Purely-Online (PO) Heuristic. The above semi-online algo­
rithms are aided by the 9 values computed from historical 
data, and hence, is not purely online algorithm. Below, we 
present a purely-online (PO) heuristic, which is motivated by 
the fact that it is optimal for networks with non-overlapping 
coverage-regions. 

Heuristic Description. At a high-level, the PO heuristic does 
the following at each time instants of "interest." It orders the 
flows (with non-zero remaining size) in increasing order of 
their allowable delays at that instant. Then, it tries to "match" 
these flows with BSes greedily, as described in detail below. 
The time instants of interest (at which the above is done) are: 
(i) arrival of a new flow, (ii) completion of a flow, and (iii) 
passing of the deadline of a non-scheduled flow. 
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Fig. 2. lbtal capacity requirements for varying delay factors, for various 
offline algorithms. 

To match flows onto BSes, we consider the flows in the 
increasing order of their allowable delays, and try to schedule 
each flow i as follows. If there is a covering BS j of i that 
is free, then we schedule i on j. Else, we try free up some 
serving BS of i, by finding an "alternating path" and "shuffle" 
some flows along this path as follows. We find an alternating 
sequence of flows and BSes (Xl, YI X2, Y2, ... , X171, Ym) such 
that (i) each Xq is a flow and each Yq is a BS, (ii) Xl = i and 
YI is a covering BS of Xl. (iii) for all q � 1, Yq is currently 
serving Xq+l, (iv) Ym is a covering BS of Xm, and (v) Ym 
is currently free (i.e., not serving any data request). If such 
an alternating path exists, then we stop serving all the flows 
{X2, X3, ... ,xm }, and reschedule each flow Xq to Yq. The 
above is thus able to schedule Xl = i on YI, if an alternating 
path as described above exists. If there is no alternating path, 
then we do not schedule i at this point and consider the next 
flow in order. 

As mentioned before, the motivation and intuition behind 
the above PO heuristic is that it can be shown to be optimal 
for the special case of the OSCF problem when the coverage 
regions of the BSes are disjoint However, the non-optimality 
of the heuristic for the general case of arbitrarily overlapping 
coverage regions cannot be bounded. We omit the below proof 
(see [28]). 

Theorem 7: The above PO heuristic solves the OSCF prob­
lem optimally, if the coverage regions of the BSes are disjoint. 

Using Non-Unit Capacity to Serve a Flow. We now discuss 
how our techniques of this section can be extended to allow 
non-unit capacities to serve a flow. If c is the bound on 
the number of units of capacities of a BS that can be used 
to serve a flow, then we make the following changes: (i) 
Extend the definition of allowable delay as follows: Wit = 

(di - t) - Sit!(OOit). (ii) Make rcl copies of each flow in S, 
when solving the matching problem for SOG and SOL. (iii) 
Allow multiple units of flow to be scheduled simultaneously 
(up to the bound of using c units of BS capacity at a time) at 
each BS, in the PO Heuristic. 

V I .  Simulations 

In this section, we analyze the performance of our various 
algorithms on real cellular network data set collected at the 
core of a commercially operated 2G/3G network. The data 
used in the evaluation consists of flow level (UDP or TCP 
flows) statistics collected for 101 base stations for a one week 
period in 2007. The region covered is about 80 square km 
spanning both dense urban and suburban areas. There are about 
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Fig. 3.  Percentage of dropped flows for varying total network capacity, for various semi-online/online algorithms. Here , the starting network capacity value 
is the near-optimal capacity requirement as computed by the LP-based algorithm. 

I million flows in the data set considered. 6 In the data set, each 
flow has an arrival time, BS-id where it is served, and a flow 
size. We assume that the flows to be served at a constant rate 
equal to its size divided by its duration? 

Since obviously there is no delayed scheduling in this 
network, the flows are immediately served with no delay and 
only on one BS.  Flows that are served are recorded in the 
data set Flows that could not be served due to unavailability 
of network resources do not have any record. 

Using a simulation model with this data set, we will 
show that (i) there is a considerable reduction in capacity 
requirements, when flows are allowed to be delayed even by 
a small factor, and (ti) with slightly additional capacity than 
the near-optimal network capacity (computed by the offline 
LP-based algorithms), our online semi-online algorithms are 
able to completely-serve all the flows. 
Flow Locations Coverage Regions, Delay-Factors. Since our 
data set neither includes the exact flow locations nor the BS 
coverage regions, we determine the set of covering BSes for a 
flow as follows : (i) We construct the Voronoi diagram over the 
BS locations ; (ti) If a flow i arrives at a BS j, then we assume 
that it can be served by any BS j' whose Voronoi region is 
adjacent to that to P Essentially, a flow i arriving at BS j can 
be served by j and any of its "neighboring" BSes. Defining 
the serving BSes of a flow in the above manner precludes the 
need to artificially generate flow-locations (which are absent 
from the network trace). 

Also, the flows in our data do not have deadlines associated 
with them. So, we run simulations for various "delay-factors" 
and define deadlines based on the delay-factor; in particular, 
for a delay-factor of c, the deadline of a flow i is computed 
to be ai + CQ.ijt Si = ai + CSi where ai and Si are the given 
arrival time and size respectively and Q.ijt is assumed to be I 
(for lack of record of low-level parameter values in our data). 

LP-Based Omine Algorithms: Delay Factor vs. Capacity 

6For proprietary reason we are unable to provide further details about 
the network. We believe that the missing details wil l  not hurt the readers' 
understanding of our work. 

7Thchnically, we are given flow duration, how long within this duration the 
flow was inactive (i,e. , no resource scheduled) and number of bytes served 
for this flow. However, it is impossible to decipher from this aggregated 
information: (i) wben the flow was descheduled either for resource limitations 
or plain inactivity (in 3GPP standard the resources can be scheduled even 
when a flow is dormant, unti l an inactivity timer fires), (ii) what bit rates the 
flow was served with when it was indeed scheduled. 

8In our data set, the distribution of BSes is roughly uniform: more than 
70% of the geographically closest neighbors are within I to 2 miles. Thus, 
coverage assumption based on Voronoi is  not too different from a coverage 
assumption based on the geographic distance. 
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Requirements. We start with analyzing the effect of deferring 
flows on the capacity needs of the network. Thus, in Figure 2, 
for varying delay-factor we plot the total network capacity 
required to completely-serve all the flows as computed by 
our LP-based algorithms. We consider both cases, viz . ,  the 
uniform as well as non-uniform BS capacities, and use all 
7 days of data.9 In the graph, for comparison purposes, we 
also plot two values corresponding to the case of delay-factor 
of one (i.e, no-delays) :  (i) capacity requirements when each 
flow can be served only by the BS it arrived at as recoded in 
the data set, and (ti) capacity requirements when a flow can be 
served by multiple BSes (as determined by Voronoi tessellation 
described above). We refer to these values as Base 1 i ne and 
Spat i a l - S h i ft Only respectively. 

As expected, the capacity requirements decrease with the 
increase in the delay-factor. The decrease is substantial even 
with minimal delays. For example , even with a delay factor 
of 1 .25 (flows can be delayed only up to one-fourth of their 
size), the capacity requirements reduce by about 50% for the 
non-uniform case and about 20% for the uniform case . This 
changes to about factors of 3 and 2 respectively for a delay 
factor of 3 (i.e . ,  flows can be delayed up to twice their size). 
Note that a sizable reduction comes from the ability of "load 
balancing" via scheduling on less-loaded neighboring BSes. 

Semi-Online and Online Algorithms: Capacity Require­
ments vs. Percentage of Flows Dropped. In this set of plots, 
we run various semi-online/online algorithms, viz . ,  (i) Semi­
Online Global (SOG), (ti) Semi-Online Localized (SOL), 
and (ill) Purely-Online (PO). We run the above algorithms 
over Wednesday's data (the results were similar for other 
weekdays), while using the remaining four weekdays of data 
to compute the statistical 9 values used by the semi-online 
algorithms. For increasing total network capacity, we plot 
the number of flows that were not completely-served (i.e . ,  
dropped). See Figure 3. Here, we vary the network capacity by 
proportionally increasing all the BS  capacities starting from (i) 
the value of the near-optimal LP-based solution (for the non­
uniform case) for the given flows, till (ti) the algorithm is able 
to completely-serve all flows. We ran the algorithms for three 
different delay-factors. We observe that both the traffic indica-

9To solve the LP program over I mil lion flows and about tOO BSes in a 
reasonable amount of time, we employed the following divide-and-conquer 
strategy: we divided the data into appropriate 3-4 hour durations, computed the 
LP solution for each input independently, and then "combined" the solutions to 
get a valid (but, perhaps, suboptimal) LP solution. Thus, the network capacity 
numbers for LP in Figure 2 and 4 are perhaps a slight overestimate of the 
hest possible LP-based solution. 

485 



2013 IEEE International Conference on Sensing, Communications and Networking (SECON) 

-.. 
... .... - .. 

'500, 1 .25 1 .5 1 .75 2 225 2.5 2.75 3 
Delay Faclcw-

Fig. 4. The g-capacity of the network, and the near-optimal offline capacity 
requireIrent, for varying delay-factors. 

tors as well as the global-matching scheme have considerable 
impacts on reduction of capacity requirements. In particular, 
SOG uses very minimal additional capacity (about 5% more) 
over the offline capacity needs, to completely-serve all the 
flows.  Even with the same capacity as the offline capacity, the 
drops are marginal (less than 10%). 

g-capacities vs.  Near-Optimal Capacities. In Figure 4, we 
show for various delay-factors : (i) the near-optimal (LP) 
network capacity needed to completely-serve all seven days of 
flows, and (ii) the g-capacity of the network, based on all seven 
days of data. We observe that the g-capacity of the network 
is only slightly higher (only about 5- 15%) than the offline 
capacity, which suggests that SOG needs only slightly higher 
network capacity to completely-serve all the flows in any of the 
historical instances. In effect, this simulation result shows that 
the variation of !p(rrn , t) values across the historical instances 
is minimal enough that the inefficiency introduced by semi­
online processing of flows as done in SOG is minimal compare 
to the near-optimal offline processing. 

V I I .  Conclusions 

In this paper, we have considered flow deferral in a cellular 
data network for more efficient scheduling. Essentially, this 
technique shifts flows temporally from peak to off-peak peri­
ods taking advantage in the inherent variability in traffic loads 
at the base stations. We have developed efficient algorithmic 
techniques to show that this can reduce network capacity 
requirements with only modest delays that appropriate delay­
tolerant applications (e .g. ,  p2p downloads or background 
synchs) will be able to withstand. Since our work focuses 
on algorithms and their efficiencies, we have used modeling 
abstractions that use several simplifying assumptions, such as 
BS capacity independent of neighboring BSes, ignoring any 
fonn of scheduling or network-controlled handoff overheads, 
advance knowledge of flow size at flow arrival, availability 
of historical data, etc . Our goal has been to validate whether 
such deferral approaches are at all effective with realistic traffic 
loads. The resuJts do indicate that tremendous cost savings (in 
tenns of network capacity requirements) are indeed possible 
with only modest delays, with savings increasing with increase 
in allowable delays. This is certainly encouraging and will 
motivate wireless carriers to incentivize mobile users to tag 
deferrable flows either automatically or manually to alleviate 
network congestions. Our future work will consider elimi­
nating some of the above assumptions and develop practical 
engineering mechanisms to achieve deferred scheduling. Of 
particular interest to us is extending our techniques  to the case 
wherein the flow size is not known a priori . 
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