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ABSTRACT
Humans see only a tiny region at the center of their vi-
sual field with the highest visual acuity, a behavior known
as foveation. Visual acuity reduces drastically towards the
visual periphery. ‘Foveated’ video coding/compression tech-
niques exploit this non-uniformity to gain significant effi-
ciency by compressing more in the periphery and less in the
center. We propose a practical and scalable method to use
such a technique for video streaming service over the In-
ternet. The essential idea is to use a commodity webcam
on the user side to provide real-time gaze feedback to the
server with the server sending appropriately coded video to
the client player. We develop a multi-resolution video cod-
ing approach that is scalable in that it is possible to pre-code
the video in a small number of copies for a given set of reso-
lutions. The coding approach is designed to match the error
performance of an eye tracker built using commodity web-
cams. We demonstrate that the technique is energy efficient
and thus usable in mobile devices. We develop a methodol-
ogy for performance evaluation of such a system when net-
work budgets may vary and video quality may fluctuate.
Finally, we present a comprehensive user study that demon-
strates a bandwidth reduction of a factor of 2 for the same
user satisfaction.

CCS Concepts
•Information systems → Multimedia streaming;
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1. INTRODUCTION
Various industry analysts [32, 27] report that over half

(and projected to be over 80 percent in near future) of the
Internet traffic during evening peak hours is from streaming
video services, such as Netflix and Youtube. Specifically,
the so-called ‘cord-cutters’ contribute significantly to this
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Figure 1: Overview of the proposed foveated video
streaming system.

consuming over 100 hours of video per month per house-
hold, on average. The cord cutters’ proportion is increasing
fast. The average quality/resolutions of available videos are
also improving fast. However, there is hardly enough avail-
able bandwidth. Roughly, the average bandwidth available
per household in many developed countries is barely enough
to stream only two HD quality videos concurrently [33, 24].
While content providers are intent on making available higher-
resolution 4K videos for streaming, and display prices are
falling fast, no ISP currently can sustain the bandwidth
needed for such videos at scale [30]. This is even at only a
slow frame rate (30 fps) and with the most aggressive com-
pression.

Similar bandwidth concerns apply to mobile platforms,
albeit at a different scale. More and more media is now con-
sumed on mobile devices and often outside the home/work
networks. Both cellular providers and ISPs employ different
rate plans and data caps, making significant media consump-
tion very expensive for the end user. They are also widely
understood to employ various forms of traffic shaping and
differentiations to reduce stress on their networks (e.g., [7])
that in turn affects end users’ quality of experience.

We propose to alleviate this bandwidth crunch by devel-
oping a new, variable resolution video streaming service that
compresses the video based on where a person is looking with
their central or foveal vision – a behavior known as foveation.
The human visual system (HVS) samples information very
non-uniformly; sampling is very dense at the center of our
visual field (fovea) but drops of roughly quadratically with
distance from the center. This decrease in sampling rate ex-
plains why human vision is blurred in the visual periphery –
we notice this by keeping our gaze fixed straight ahead and



trying to read something out of the corner of the eye.
Our idea is to compress video so as to roughly match this

sampling limitation of human vision, under the assumption
that high-resolution video falling on the low-resolution pe-
ripheral retinas of viewers will be wasted. While a number
of techniques for achieving a similar compression by exploit-
ing the aforementioned property of the human visual sys-
tem do exist (see, e.g., [39, 2, 12, 29]), existing methods of
video streaming have failed to exploit these advances. The
key reason is that it is usually unknown where a person’s
gaze will be ‘pointing’ at any given time while watching a
video. This generally requires a continuous feedback of the
gaze information to the video streaming server so that the
server can deliver an appropriately compressed video taking
into account the gaze information and available bandwidth
estimate. See Figure 1. Determining gaze position typi-
cally requires a separate ‘eye tracker’ that is not a commod-
ity device. A more realistic and scalable solution is needed
for wide-spread adoption of foveated video compression for
video streaming over the Internet.

With this backdrop we make three contributions in this
paper:

1. We develop a multi-resolution video coding approach.
The approach is ‘scalable’ in that only a limited num-
ber of copies of the video at different resolutions need
to be stored at the server (Section 3.1). The coding ap-
proach is designed to match the error performance of
an eye tracker built using a commodity webcam (Sec-
tions 3.2, 3.3).

2. We demonstrate that the technique is energy efficient
and thus usable in mobile devices (Section 3.4).

3. We develop a methodology for performance evaluation
of such a system. We use this methodology to per-
form a comprehensive user study (Section 4). The
user study shows that significant bandwidth savings
are possible by adopting such foveated video stream-
ing without degrading perceptual video quality.

2. BACKGROUND AND RELATED WORK

2.1 Concept of Foveation
The light passing through the optics of the human eye

projects on the retina and is sampled by the photorecep-
tor cells – rods and cones. These photoreceptors are non-
uniformly distributed over the surface of the retina. See Fig-
ure 2. The concentration of cones (the specific type of pho-
toreceptors responsible for chromatic vision in good lighting
conditions) is the highest at the center of retina (zero ec-
centricity) in a very small area– called the fovea. The fovea
occupies only about 2◦ of the visual field and is roughly
the width of your index fingernail at arm’s length. The
concentration of cones declines almost quadratically with
increasing eccentricity (see Figure 2(a)). This non-uniform
sampling gives rise to a very sharp central vision (also called
foveal vision) and rapid loss of sharpness as one moves away
from the fovea.

When a human observer gazes at a point in a real-world
image, a variable resolution image is thus transmitted to the
brain. The region around the point of fixation (or foveation
point) is imaged onto the fovea, sampled with the highest
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Figure 2: Human visual system (HVS)

density, and perceived by the observer with the highest vi-
sual acuity. The sampling density, and thus the visual acu-
ity, decrease dramatically with increasing eccentricity. De-
spite this non-uniform sampling in the human visual sys-
tem, traditional imaging techniques use uniformly sampled
images in rectangular lattices. This is clearly inefficient.
More effective would be to roughly match the level of video
compression to the non-uniform sampling introduced by the
human visual system.

This observation gave rise to a significant body of work on
foveated image processing (see, e.g. [15, 6, 38, 28]) targeted
around various applications. This also included image/video
compression and efficient communication. Clearly, compres-
sion losses are well tolerated in peripheral regions as opposed
to near the fixation point. This can be utilized to pro-
duce variable rate compression and reduce the bandwidth
required to transmit the same image for a similar level of
user satisfaction. Similarly, in noisy communication envi-
ronments, foveation provides a natural way for unequal er-
ror protection for different spatial regions of the image. De-
spite these advances, use of fovated compression techniques
for Internet video streaming is far from a reality. This is
largely due to scalability reasons. First, the compression
must be computed in real time on the server side using the
gaze feedback. Second, precise gaze feedback typically needs
expensive eye trackers that are not commodity and also in-
convenient to set up and use. In this work we address the
former issue by designing a multi-resolution precoding ap-
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Figure 3: Multi-resolution coding in a 16 × 9 grid
used in the experiments. The regions L1, L2 and L3

are coded in progressively higher resolutions.

proach compatible with modern day video servers. Thus,
the need for real time computation is eliminated. We ad-
dress the latter issue by using commodity webcam-based
eye tracking. We discuss eye tracking next.

2.2 Eye Tracking
Eye tracking techniques are capable of providing very good

estimates of the point of fixation needed for foveated video
processing. Most common eye trackers today use a combi-
nation of infra-red (IR) illumination and an IR camera [13,
23]. The basic concept is to use the light source to illuminate
the eye causing highly visible reflections, and the camera to
capture an image of the eye showing these reflections [36].
The image captured by the camera is then used to identify
the reflection of the light source on the cornea (glint) and
in the pupil. Geometric calculations based on the relative
positions of these images are then used to calculate the gaze
direction. Most commercial eye trackers, such as Tobii [36],
The Eye Tribe [35], and SMI [34], estimate eye gaze with
high accuracy using the above approach. However, these
devices are not commodity and are often large and expen-
sive.

Advances in computer vision have now enabled estimation
of human gaze direction using images of the eye captured
on a webcam-class camera. While the accuracy of these
techniques is generally poorer than IR-based trackers, these
techniques could be very useful in practice as webcams are
commodity and many end-user devices are already equipped
with webcams.

Several related webcam-based eye-monitoring techniques
have been recently extended to mobile smartphones and
tablets [40, 22]. This trend is expected to continue. This
generally establishes the potential of using eye tracking on
commodity video platforms.

3. DESIGN OF THE FOVEATED
STREAMING VIDEO SYSTEM

The basic design of the foveated video streaming system
is similar to a conventional adaptive streaming video sys-
tem [9, 14]. See Figure 1. The client player continuously
estimates the available network bandwidth and possibly also
available compute capacity on the user device and requests
the next chunk of video in the appropriate resolution. The

requested resolution is commensurate with the available net-
work bandwidth and compute capacity available for decod-
ing such that the required display frame rate can be main-
tained. Typically, the video is pre-coded at the server at a
set of standard resolutions, as real time encoding could be
difficult. The available resolutions are already known to the
client at the initial negotiation time and thus the client only
asks for one of the available resolutions for each chunk. In
the foveated streaming system the basic framework is the
same except that the client now feeds back the gaze infor-
mation periodically to the server.

3.1 Multi-resolution Coding
A design decision had to be made about how the video is

to be coded on the server side. Foveated image/video coding
is a mature topic (see a review article in [39]). However,
the existing techniques are dependent on precise gaze feed-
back (point of fixation) and the coding is dependent on this
point. This makes it hard to pre-code videos, as only a lim-
ited number of encodings are possible for a given video for
scalability reasons.

Instead, we take a more practical approach. Due to the
computational and network delays, the feedback to the server
about the gaze information is expected to have a lag. Thus,
precise real-time gaze information is not likely available. Ad-
ditionally, the gaze feedback can only be periodic and not
continuous. Thus, in between feedback events the gaze es-
timate is only approximate. (We study this aspect in more
detail in Section 3.4.) Given these sources of error, the cod-
ing approach we use must be tolerant to errors in the gaze
estimate. Based on this observation we take the following
approach in order to pre-code videos.

Assume that the screen is split into a rectangular grid –
a 16 × 9 grid is used in all experiments. See Figure 3. The
choice of this grid size is somewhat ad hoc. 16× 9 is similar
to several standard screen sizes. Splitting the grid further
(e.g., 32 × 18 etc.) would result in too many grid cells and
affect scalability. Each of the 144 grid cell thus produced
is now pre-coded in a standard set of resolutions that are
commonly offered on Internet streaming servers. These cells
are divided in three sections – L1, L2 and L3, coded in
progressively higher resolutions. The sections are organized
as shown in Figure 3 with L3 in the middle, surrounded by
L2 and then L1. The general idea is to place L3 such that
the estimated fixation point is at the center.

Other important design choices include: (i) the respec-
tive sizes of the sections Li and (ii) the actual resolutions
that each of the Li’s should be coded in. These choices are
made such that the offered screen resolution follows the cen-
tral and peripheral visual acuity in the human visual system
(Figure 2(a)) as closely as possible. For (i) we choose L3 as
a 3×3 region with L2 as a unit width annular region around
it (Figure 3). The rest of the frame is L1. For (ii) we use
6 different resolutions for individual grid cells (144p, 240p,
360p, 480p, 720p, 1080p) and choose selected combinations
of these in different sections (Li). Overall, 4 different coding
levels are used - F1 through F4 - with different choices of
resolutions for the sections Li. The actual choices made are
shown in Figure 4.

The baseline system chosen for performance bench mark-
ing uses 5 different resolutions, from 240p to 1080p. These
resolutions are presented uniformly to the entire screen. They
are referred to as B0 through B4. All different choices are
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Figure 4: Four resolution levels (F1 through F4 ) chosen for the foveated system are shown along with the
visual acuity in human visual system. The four levels consume progressively lesser network budget. In each
level Fi, the choices of the actual resolution for the sections L1 through L3 are made so that they map, in
relative terms, as closely as possible to the visual acuity.

again summarized in Table 1 for easy reference.
We now compare the network capacity (bits/sec) needed

to transmit the aforementioned resolution levels Bi (Fi).
To do this we use the capacity needed for 2K video (i.e.,
2048 × 1080p) as the reference, as if consuming 100% of
capacity budget. We then determine the bits/sec capacity
needed for all different resolution levels and normalize them
against the above reference. The results are summarized in
Figure 5. The capacity numbers are determined via actual
measurement of bits/sec captured from real network traces.
Thus, they capture the actual load on the network including
all packet header and protocol related control packet over-
heads.

This figure demonstrates the network efficiency of the
foveated system. For example, with ≈ 50% network budget,
the baseline player can play at only 480p, but the foveated
player can play 1080p for L3, 720p for L2 and 480p for L1.
As evaluations will show later, the latter player provides a
much improved user satisfaction without consuming any ad-
ditional resources.

Summary: In the proposed foveated system, the video is
pre-coded on the server side with each of the 144 grid cells
pre-coded and stored in 6 base resolutions. Then they are
‘stiched’ appropriately to form the three sections L1 through
L3 (Figure 3) at different chosen resolutions, given the res-
olution level to be played - F1 through F4 (Figure 4). The
positions of sections Li on the frame is determined from the
gaze feedback received from the client. The resolution level
is chosen based on the network capacity budget (Table 1).
The stitching is actually done on the client side in our exper-
imental system for ease of implementation, but server-side
mechanisms are possible.

We will now describe the design of the gaze tracker on the
client side.

3.2 Gaze Tracker Design
Low-cost real-time gaze tracking is at the core of foveated

video streaming, as the perceived quality of the video de-
pends on real-time knowledge of the viewer’s visual atten-
tion. In a real-world service (i) the system should have ad-
equate accuracy while using only inexpensive, commodity

N
et

w
or

k 
bu

dg
et

 (
%

)

0

20

40

60

80

100

B0 B1 B2 B3 B4 B5

1080p

720p

480p

360p

240p
144p

F1 F2 F3 F4

480p

720p
1080p

360p

240p
144p
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hardware; (ii) it should have low computational cost while
providing close to real-time service; and (iii) it should be
energy efficient overall so that the same general technique
can apply to mobile devices. Any off-the-shelf method us-
ing a regular webcam allowing for natural head movement
(Section 2.2) can be used for our service [20, 40, 44]. High
accuracy is not required given the tolerance of our basic
design – the highest resolution section L3 is ≈ 8◦ degrees
wide. This is a significant margin as we will see in our eval-
uations later. We use an open source implementation for
our webcam-based gaze tracker [26, 25, 11] and show that it
performs adequately to the system needs.

The specific off-the-shelf webcam-based gaze tracker we
used is called GazePointer [11]. Gazepointer performs in
real time (30 frames/sec ) and works even with a low-resolution
webcam – this makes it widely useful in commodity plat-
forms and also saves energy. It also does not require signifi-
cant computational load (more on this later).



Baseline Player Foveated Player

Res. level Resolution Network bud-
get(%)

Res. level Network bud-
get(%)

L3 L2 L1

B0 1080p 96.6
B1 720p 60.35 ←→ F1 42.48 1080p 720p 480p
B2 480p 36.00 ←→ F2 28.14 720p 480p 360p
B3 360p 24.66 ←→ F3 17.65 480p 360p 240p
B4 240p 15.33 ←→ F4 10.95 360p 240p 144p

Table 1: Resolution levels used in the baseline and foveated players.

For the benefit of the reader, we briefly describe how Gaze-
pointer works. More details are in [5]. Gazepointer follows
the conventional model-based approach. First, it detects
the position of the face at the first frame [37]. Then, when
the face is detected, the characteristic points of the face are
identified and a parameterized face mask is automatically
mapped on the face. Detection of the characteristic points
of the face and their temporal tracking are based on an Ac-
tive Appearance Model [4] with regard to the 3D position of
the camera. The eye corners are detected from the 3D face
model, then the precise boundary of the pupil is extracted
by a technique similar to [18]. The estimated eye position is
computed based on the vector difference between the pupil
center and the eye corners.

In order to calculate the fixation point on the screen, a
mapping between locations on the screen and an estimated
point must be established through an initial calibration pro-
cedure. The calibration works by looking at 9 different
points on the screen. Re-calibration may be necessary if the
head moves significantly. In our experience the system tol-
erates normal head movements well, when the user is within
normal viewing distance and is engaged in the video on
screen. In our user experiments re-calibrations were rarely
needed.

3.3 Gaze Tracker Evaluation
We evaluate the gaze tracker above for accuracy. For this

set of experiments, we use a 1920× 1080 resolution 24 inch
monitor with a webcam mounted on top. The screen is
placed at a reading distance (≈ 50 cm) from the subject.
The subjects are asked to look at 100 points flashed at ran-
dom locations on the screen and the degree of error is calcu-
lated from the point location and the estimated gaze point.
We perform two different sets of experiments: (i) with head
fixed using a chin-support to provide a set of baseline mea-
surements, and (ii) with head free that would be the normal
operating condition allowing free head motion. Two differ-
ent webcam resolutions are used – 320× 240 and 640× 480.

Figure 6(a) shows the accuracy of the gaze tracker in terms
of the error CDF (cumulative distribution function). As ex-
pected, if the resolution is lower or the head moves freely
the performance is somewhat poorer. But overall the per-
formance is quite good – with the 90-th percentile error be-
tween 6.3◦−8◦ depending on resolution used when the head
moves freely. Figure 6(b) shows the scatterplot of the degree
error for all collected data points separated into the X and
Y direction. No systematic bias in any specific direction is

observed.
It is important to consider what implications the degree

of eye tracker error presented here has for the design choices
we made in Section 3.1. To do this, we map each point
to the corresponding grid cell (out of 144) and determine
the error in terms of the grid cell distance (distance 1 is
a neighbor cell when cells are considered 8-connected, etc).
The distribution is presented in Figure 6(c), showing that
the 90-th percentile error is within distance 1. Thus, given
our conservative choice of the size of L3 (3 × 3 grid) there
is over a 0.9 probability that the user will perceive his/her
central vision with the highest offered resolution.

We note here that with improvements in webcam-based
gaze tracking and improved camera resolutions, it would be
possible to make a much ‘tighter’ choice for L3 for even
better network performance.

3.4 Discussion

3.4.1 Saliency
Instead of using eye gaze directly to determine visual at-

tention, it may be sufficient to use automatic saliency detec-
tion as a proxy for gaze position [3, 21, 15, 43]. The idea is to
preprocess the video to create a saliency map that predicts
regions of interest (ROI) that have been shown to correlate
with viewer fixations. Various types of saliency have been
studied in the computer vision literature, such as saliency
maps using low-level image features (e.g., color or intensity)
or semantic saliency maps that use higher level features (e.g.,
face or other meaningful objects) [45]. However, saliency-
based techniques have only limited potential in our context.
First, the ROI determined via automated techniques may
still be quite large in proportion to the screen size. Second,
predictions of attention from saliency maps are far from per-
fect. It is well-known that human attention and fixations
reflect the goals of the viewer [41], and these top-down goals
are not captured by saliency models. Third, there is often
poor agreement in the eye movements of people viewing the
same image or video [8, 42], and this variability is also not
captured by saliency models. However, saliency detection
can still be useful in predicting a few frames ahead, when
gaze feedback has substantial lag. It may be possible to
learn more personalized, and consequently more accurate,
saliency maps from the history of eye movements for a spe-
cific user viewing a specific video [31]. If so, perhaps auto-
mated saliency detection can be integrated into our foveated
video streaming system to further improve performance.
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Figure 6: Performance of the webcam-based gaze tracker used in evaluation.

3.4.2 Handling lag
The gaze tracker presented in Section 3.2 works at 30 Hz

providing an update every 33 ms. On top of this, there is
a network delay that could be in the order of 10-1000 ms
on the Internet. But Internet latencies are improving fast
with the introduction of CDNs by content providers. As
a reference, a 2009 study on Google CDNs shows that the
90-th percentile one way delay is about 100ms [17]. To un-
derstand how much the eye gaze can move within this time,
we analyzed a dynamic eye movement dataset for subjects
watching video [21]. From this dataset, we computed the
pixel distance that the subject’s eye gaze travels within a
given interval of time and mapped this pixel distance to the
size of the center section L3. The analysis showed that it
took up to an average of ≈ 660 ms for the gaze point to
move outside of L3 provided the initial fixation was right at
the center of L3. This bolsters our conviction that lag in
the gaze feedback is not likely to be a significant problem
except in a network with poor infrastructure. Further, var-
ious gaze estimation methods (e.g., [10, 16]) can be used to
supplement and overcome possible lags.

3.4.3 Buffering
Most streaming systems pre-fetch frames in advance of

playing and buffer them at the client. The general goal is
to ‘ride out’ transient network bottlenecks. The amount of
buffering is very design specific. Buffering introduces a prob-
lem with foveated videos as frames pre-fetched significantly
in advance lack gaze feedback and may not be compressed
correctly. To alleviate this, we propose to prefetch the en-
tire frame only in the lowest resolution (i.e., L1 resolution)
consistent with the level being played. For example, when
the video is being played at level F2, the entire frame is
pre-fetched at resolution 360p. See Table 1. The higher
resolution parts of the image for L3 and L2 are fetched at
approximately real-time based on gaze feedback. Further
optimizations can be done by using a person’s history of
eye movements to pre-fetch parts of L3 and L2 in advance
as well. Given that L3 and L2 present a small part of the
network budget (Figure 5), we expect this to work well in
practice.

3.4.4 Screen size
While the user experiments reported in this paper are

done on relatively large screens (desktop monitor), our work
is not fundamentally limited by screen size. This is because
changes in viewer fixation still occur even for smaller screens.
The fovea occupies only about 2◦ in the visual field (Sec 2.1),
an area smaller than a fingernail at typical smartphone view-
ing distance. Thus, large regions of a phone screen can still
be delivered at a much lower resolution without affecting the
viewing experience.

Broadly, the only practical concerns are: (1) the angle that
a screen subtends at the viewer’s eye at a typical viewing
distance and (2) degree-wise accuracy of gaze tracking with
respect to this angle. Both the 24 inch and 12 inch screens
(studied in the paper) subtend approximately 45◦ − 50◦ de-
gree angle at the eye. For smaller screens, the viewing angle
reduces somewhat falling to about 38◦ for a 6 inch screen,
for example. This is due to the shortening of the viewing dis-
tance, which we expect will also improve the gaze tracking
accuracy proportionately. Thus, the overall improvement is
still expected to be quite similar for small screen devices.

3.4.5 Number of viewers
So far we have assumed that there is only a single viewer.

Solo video watching is quite common, especially on personal
devices. However, in principle our approach can be extended
to multiple viewers, although tracking multiple eyes simul-
taneously does become computationally expensive. Also, if
the viewers look at different locations on the screen, the effi-
ciency of the system can diminish as multiple regions would
have to be fetched at higher resolution. But several inter-
mediate solutions are possible. For example, our foveated
system can be used only when viewer fixations overlap.

3.4.6 This work
Our work here does not attempt to design a complete

end-to-end solution including handling of real network lag
or buffering issues, which are beyond the scope of this pa-
per. Instead, our goal is to highlight the potential for a
commodity-based, scalable foveated approach to reduce the
network capacity budget and, in so doing, improve user satis-



faction for the same budget. We do this via a comprehensive
user study described in the following section.

4. USER STUDY
We describe a comprehensive user study in this section

to determine the perceptual quality of the foveated video
streaming. The goal is to showcase the potential for sig-
nificant network budget reduction for the same perceptual
quality, or significant improvement of perceptual quality for
the same network budget. We first describe the user study
set up and then present the results.

4.1 Study Setup
The study was conducted on a lab table top using a 24-

inch monitor (1920×1080 resolution, 53.3×29.6 cm physical
screen) driven by a general purpose PC (Intel i5, 4GB RAM,
Windows 8.1). The subjects were positioned at a comfort-
able viewing distance (approx 50-60 cm). Thus, the viewing
angle was about 50◦ with each grid cell subtending about 3◦

at the eye.

4.1.1 Choice of videos and recruitment of subjects
We picked 48 videos of 1080p (1920×1080) resolution from

16 channels of YouTube.1 From each channel, the 3 most
popular 1080p videos were chosen, for a total of 48 videos.
Each video was then encoded in multiple resolutions: 1080p
(original), 720p, 480p, 360p, 240p, and 144p. Only a 30 sec
clip from each video was picked for the actual study.

We recruited 16 subjects, half male and half female, with
ages ranging from 22-45 years and with varying ethnic back-
grounds. None of the subjects were aware of the nature of
experiments to be conducted. The subjects were instructed
to watch video clips, and to press a single button when they
perceived the video to be of poor quality and to release the
button when they perceived the video to be of good quality.
Button press times were logged for later evaluation. This
task was intended to provide a relatively non-intrusive mea-
sure of video quality, with longer total button press times in-
dicating a poorer quality viewing experience. Subjects were
familarized with the task before the study by having them
view a sample video (not part of the data set) at different
levels of quality during a practice session. Nevertheless, 3
out of 19 tested subjects were excluded from the study for
not following the instructions, leaving the data from only 16
subjects for analysis.

4.1.2 Structuring subjects and videos
The experiment was counterbalanced such that each sub-

ject was randomly paired with another subject for the pur-
pose of evaluation. One subject of the pair watched a ran-
dom half of the 48 clips in baseline mode and the other half
in foveated mode The other subject watched the same se-
quence of clips - but in the opposite modes. In other words
if one watched the 48 clips in the following fashion:

CLIP1 - CLIP2 - CLIP3 - CLIP4 - --- - CLIP48

Foveat - Base - Foveat - Base - --- - Base

1Youtube has 19 channels but 3 of them are derivatives. The
16 chosen channels considered are 1) Music, 2) Comedy, 3)
Film and Entertainment, 4) Gaming, 5) Beauty and Fashion,
6) TV, 7) Automotive, 8) Animation, 9) Sports, 10) Tech,
11) Science and Education, 12) Cooking and health, 13)
Causes and non-profit, 14) News and Politics, 15) Lifestyle,
16) How-to and DIY.
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Figure 7: Sequencing of video resolutions for the
user study. The network budget is from Table 1
and is shown only as a guide. The red segments
correspond to a button press indicating poor quality
perception from an example trace.

the other would watch the clips in the sequence:

CLIP1 - CLIP2 - CLIP3 - CLIP4 - --- - CLIP48

Base - Foveat - Base - Foveat - --- - Foveat

We also made sure that the same content category was
shown equally in the baseline and foveated modes. This
was done because a users’ sensitivity to poor video quality
may depend on the video content.

4.1.3 Sequencing video resolutions
To measure perceptual video quality we first needed a ref-

erence. The reference would ideally be an uncompressed
version of the video. We used the 1080p baseline video (B0
in Table 1) as a proxy for this ideal, which we denote as U .
The idea is to show a segment of the U video either once at
the start of the clip, or to periodically show the U video to
subjects so as to enable them to recalibrate their expecta-
tion of good video quality and to obtain perhaps meaningful
feedback about drops in quality when compressed versions
are shown. More specifically, for each 30 sec video clip the
two sequencing conditions were:

1. Uncompressed after every transition: Alternate be-
tween uncompressed and compressed several times for
each video clip. For example, the 30 sec clip might be
played in 8 segments (shown below), with a different
resolution used for each 3.75 sec segment (stitched to-
gether to make a continuous video stream).
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Figure 8: User study results: perceptual video quality vs. various compression levels in the baseline and
foveated players. Error bars indicate standard errors. Note that foveated streaming results in up to a 50%
reduction in the time that poor video quality is perceived.

U → B2 → U → B1 → U → B4 → U → B3

This condition models varying resolutions in the com-
pressed versions (B2, B1 etc) due to a varying net-
work capacity budget, but U is always shown before
the compressed version to recalibrate the subject.

2. Uncompressed once at start: Show uncompressed seg-
ment only once at the start of a clip, followed by com-
pressed segments varying in resolution. For example,
the 30 sec clip might be played in 5 segments (shown
below), with each 6 sec long segment having a different
resolution.

U → B3 → B1 → B4 → B2

Note that in this condition U is shown only once at
the start of the clip for subject calibration, followed
by segments varying in resolution that might reflect
varying network capacity budget.

The two sequencing methods enable different evaluations
of the perceptual impact of the varying video resolutions.
This is because a subject may perceive the same quality
on the same clip differently depending on what was shown
immediately prior.

For each subject, the first 24 video clips are shown under
condition (1) and the second 24 are shown under condition
(2). See Figure 7 for a graphic depiction. Note that each
subject watched half of the videos with baseline compression
(B1, B2, etc.) and other videos with foveated compression
(F1, F2, etc.), and we ensured that the same sequences were
used for both. For example, if a subject watched a video
clip as U → B3 → B1 → B4 → B2, his/her paired viewer
watched the same clip as U → F3→ F1→ F4→ F2. The
actual sequence of resolutions, e.g., F3 → F1 → F4 → F2,
was randomly selected.

Figure 7 also shows button presses from example traces.
Note that the user sometimes pressed the button after a
slight delay following a drop in quality, and sometimes de-
layed slightly their release of the button after the quality
improved. Our analysis later attempts to correct for this
lag in reaction time.

4.2 User Study Results
The results are summarized in Figure 8, which show the

fraction of time the subjects perceived poor video quality for
baseline and foveated compression conditions. The error
bars indicate standard error. In the first two plots (Fig-
ures 8(a) and (b)), the total duration of button press times
are used to calculate the fraction of time poor video quality
was reported. The second two plots (Figures 8(c) and (d))
compensate for user reaction time lag (discussed in the pre-
vious subsection) as follows. If a button press is initiated
in response to a given level of resolution, that entire clip
segment shown at that resolution is counted as a poor view-
ing experience. Also, if the button is pressed for the entire
duration of a segment (i.e., the button is pressed during an
earlier segment and is released during a later segment), such
segments are also counted as a poor viewing experience. No
other time intervals are counted as indicating a poor viewing
experience (e.g., when a button press ends but does not start
in a segment) in this lag-corrected estimate.2 Note that af-
ter this compensation, indications of a poor perception of U
almost disappear, suggesting that the compensation method
worked well.

Compression levels with similar network budgets (see Ta-
ble 1) are grouped together in the plots for ease of read-
ing. For example, B4 and F4 are grouped together. Re-
call that in each of these cases they have similar (but not
identical) network budgets, and the budget for the foveated
version (e.g., F4) is always slighty lower (Table 1). Still, the
foveated versions almost always result in a significantly bet-
ter user experience. Looking at Figure 8(d), which portrays
the most realistic evaluation with compensation applied,
note that the fraction of poor quality perceptions roughly
halves with foveated compression.

In Figure 9 the same data are plotted differently after
normalizing for the quality of perception. The plots show
satisfaction level, defined as ‘1 − fraction of time the sub-

2Thus, if the subject presses the button sometime after the
start of a ‘bad’ interval and releases it after the start of
a ‘good’ interval, the entire bad interval is counted as a
poor viewing experience and no part of the good interval is
counted as poor.
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Figure 9: Satisfaction level vs. network budget for
baseline and foveated compressions.

ject perceives poor video quality,’ as a function of network
budget. Note that for the same satisfaction level the net-
work budget is roughly halved for the foveated version. As
expected, the difference between the two gets smaller with
increasing budget, indicating that constrained networks will
benefit more from foveated video streaming. Qualitatively,
there is no significant difference between the two cases ‘U at
every transition’ or ‘U once at start.’

5. ENERGY MEASUREMENTS FOR MO-
BILE USE

Our goal is to make foveated video streaming widely avail-
able across a range of devices. Since a large and growing
amount of video is consumed using untethered mobile de-
vices, we want to ensure that our design is energy efficient
when used on a mobile device. The concern is that our sys-
tem requires that the webcam be continuously on, and that
there is some additional computational load imposed by the
gaze tracking.

We used a Microsoft Surface Pro3 tablet with 4GB RAM
running Windows 8.1 to perform the energy measurements.
Software-based measurements of the remaining battery level
were obtained via the system-provided API. Four major
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Figure 10: Energy expended in running the foveated
streaming client at different resolution levels on a
tablet over WiFi.

components of the client player software were systemati-
cally assessed by turning on each component incrementally
and measuring the total energy expenditure for running a
24 min long video (sequence of all the clips used in the user
study). An average of 5 runs are reported. The components
studied were:

1. Baseline: Basic functionality such as display and com-
putations for the streaming service, excluding the con-
tribution of the network components; the network is
disabled and video is stored on local flash.

2. Foveation: Additional video decoding computation needed
for foveated compression, such as stitching the sec-
tioned multi-resolution images.

3. Network: All network components while using 802.11n
to connect to an external server.

4. Gaze tracking: Webcam and gaze tracking software.

The results are shown in Figure 10. Note that the baseline
energy costs are slightly higher for baseline (Bi) playing, as a
high resolution video must be decoded for the entire screen.
The network energy costs are roughly similar to the network
budget. The energy cost for gaze tracking is non-negligible
– about 20-25% of the total. We believe that the use of
lower power cameras, such as those being proposed for con-
tinuous vision applications on mobile devices [19], or low
power IR cameras, such as the ones used in Amazon Fire
phone [1], would reduce this component of the energy cost.
Computational optimizations internal to the gaze tracker
are also possible. Similar optimization is also possible in
the foveation component, but this was not attempted in the
current implementation. Nevertheless, even with the cur-
rent, unoptimized system, the energy results are encourag-
ing: compression levels producing similar user satisfaction
levels (e.g., B2 and F1, B3 and F2, B4 and F3, etc.) incur
very similar energy costs. See the user study in Section 4
for the actual satisfaction levels.

6. CONCLUSIONS
This work introduces a conceptual framework for a foveated

video streaming service for Internet video servers. The goal
is to exploit commodity webcams commonly available in
many devices to develop a scalable system that takes eye



gaze information from the user and uses it to transfer dif-
ferent parts of the video frame from the server at varying
resolutions. The hope is that such a service will alleviate the
bandwidth crunch in today’s Internet – much of it arising
from streaming videos. We see the contribution of this pa-
per being the description of this conceptual framework, with
its focus on a commodity-based scalable solution, and not
the delivery of a system designed and optimized for specific
hardware settings. For much of our study the basic tools
that we used were off-the-shelf, such as the webcam-based
eye gaze tracking.

This paper also develops a robust methodology for con-
ducting user studies aimed at comparing video quality when
network budgets vary and video resolutions fluctuate. Using
this methodology, we conducted a comprehensive user study
that showed a factor of 2 bandwidth reduction while keeping
the same user satisfaction. This is promising.

Although outside the scope of the current study, future
work will move closer to a completely designed end-to-end
system enabling the study of varying network conditions and
prefetching and buffering techniques in the context of our
foveated video streaming system. We will also attempt to
combine automated saliency detection with eye gaze [3, 21,
31] so as to further improve system performance.
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