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Abstract

Computation offloading is a method of saving energy and time on resource-constrained mobile devices by executing some tasks on
the cloud. A computation offloading mechanism determines portions of the application that can be offloaded for remote execution.
The offloading decision problem depends on various parameters, like application characteristics, network conditions, hardware
features, that influence the operating environment of an offloading system. Variations in these parameter values make it challenging
to design effective offloading solutions that can adapt gracefully to all the changes. Hence a number of work has focused on
offloading solutions that can adapt to changes in the parameter values. In this paper, we survey adaptation techniques used by
offloading systems. We provide a panoptic view of the task offloading problem by identifying the variable parameters in the
offloading ecosystem, present offloading solutions that adapt to these parameters, and point out the associated improvements in
Quality of Experience of users.
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1. Introduction

Computation offloading involves partitioning power-hungry
mobile applications to utilize remote cloud resources. An of-
floading framework identifies portions of code that are profiled
to be computation and energy intensive to execute on cloud
servers. The benefits of offloading to save energy on mobile
devices has been demonstrated in several prototype systems
[31, 29, 60]. However, computation offloading is yet to be in
mainstream use on mobile devices [14] [44].

One of the challenges towards practical use of computation
offloading is the unpredictable operating environment. There
are several sources of variation due to application characteris-
tics, network conditions and platform differences. The unstable
bandwidth of wireless networks can hurt the gains derived from
using offloading. Similarly, diversity in application workload
on the device, or on the cloud servers can diminish the potential
gains from offloading.

At the core of it, the problem lies in how the task offload-
ing mechanism selects the tasks for remote execution. If the
offloading decision cannot factor in variations in the operating
environment, it can lead to poor performance. Several recent
works have explored offloading techniques that can adapt at
run-time to changes in the operating parameters. Adaptive of-
floading solutions are complex given the presence of several
parameters and their unpredictable variations. Hence the so-
lutions have explored techniques that range from adapting to
single parameter to multiple parameters.
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In this paper, we survey the state-of-the-art adaptive algo-
rithms used for computation offloading. In order to define the
sources of variation in the operating environment, we describe
the entities in a practical mobile-cloud ecosystem. We use this
ecosystem to define the parameters that can vary at runtime,
and its effect on user experience. We classify the solutions for
adaptive offloading based on the parameters that the solution
can adapt to. We also present the effect of the parameters on the
Quality of Experience metrics suitable for offloading environ-
ment, like energy saved, application completion time, monetary
cost, and security features.

A number of surveys have studied offloading frameworks
from various viewpoints (Table 1). For example, Dinh et al.
[34] summarize the overall idea of computation offloading, and
discuss its different applications. Shiraz et al. [100] and Sharifi
et al. [95] discuss different methods of implementing offload-
ing from smartphones. Abolfazli et al. [2] study the impact of
types of cloud resources used on computation offloading. A
more recent survey, Sanaei et al. [88], provides a taxonomy of
the environment in which offloading is used. Liu et al. [75]
focus on the offloading algorithm used by different offloading
frameworks. Finally, Shaukat et al. [96] provide a taxonomy
of solutions that use cloudlets, which are defined as resource-
rich computers in proximity to mobile devices. However, these
surveys do not study the adaptation of offloading algorithms to
different environmental conditions. Since offloading is known
to improve performance of mobile applications, an important
factor behind its adoption lies in the way it works in the real
environment. Thus, we focus on adaptive offloading techniques
aimed at handling changes in the operating environment.

The contributions of this paper are summarized as follows:
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Table 1: A summary of related surveys, and their relation to our work.

Work Topic
Sharifi et al. [95] Working of different computation offloading frameworks
Shiraz et al. [100] Implementation techniques of different computation offloading frameworks

Dinh et al. [34] Overall survey of mobile cloud computing, including offloading to cloud servers
Fernando et al. [42] Survey of different design choices faced by design of computation offloading framework

Kumar et al. [61] Classification of offloading algorithms for computation offloading
Khan et al. [58] Survey of different ways of modeling a mobile application for computation offloading

Abolfazli et al. [2] Survey of cloud resources used to augment mobile applications and its effect on their performance
Khan [59] Survey of strategies to speed up application execution using computation offloading

Sanaei et al. [88] Taxonomy of environmental variation in mobile cloud computing
Liu et al. [75] Working of different computation offloading algorithms

Ahmed et al. [7] Survey of different objectives and constraints used in offloading
Alizadeh et al. [8] Authentication techniques in mobile cloud computing
Shiraz et al. [101] Analysis of time, energy and cost overhead of deploying offloading framework on smartphones
Ahmed et al. [6] Seamless execution of mobile cloud applications

Shaukat et al. [96] Taxonomy of cloudlet-based solutions (computing resources close to mobile devices)
Our Work Adaptation of offloading frameworks to environmental variation

Table 2: A list of acronyms used in this survey.

DAG Directed Acyclic Graph
DVFS Dynamic Voltage and Frequency Scaling
GPU Graphical Processing Unit
MEC Mobile Edge Computing
SDN Software-defined Networking
QoE Quality of Experience
VM Virtual Machine

• We identify parameters that are prone to variation in a
practical mobile cloud ecosystem.

• We discuss adaptation techniques used by offloading frame-
works to handle varying parameters.

• We explain the effect of different parameters of the mobile-
cloud ecosystem on user experience.

The rest of this paper is organized as follows. Section 2
presents the working of an offloading framework and explains
the necehassity of making it adaptive to the operating environ-
ment. In Section 3, we introduce our classification of the en-
vironment, and the Quality of Experience (QoE) metrics. Sec-
tion 4 shows the decision problem that an offloading framework
solves to execute an application. Sections 5, 6, 7 and 8 discuss
the way offloading frameworks adapt to diverse mobile applica-
tions, network conditions, execution platforms and cloud man-
agement techniques respectively. In Section 9, we discuss dif-
ferent parameters that affect the user experience. In Section
10 we highlight some existing challenges hindering adoption of
offloading frameworks. Section 11 concludes this survey.

2. Background

In this section, we first explain the working of an offloading
framework. Then we explain the concept of adaptation in the
context of offloading.

Figure 1: Typical architecture of a computation offloading system. The mobile
device uses the wireless network to offload computation to the remote servers.
The offloading system supports userSh expectations of Quality of Experience
(QoE) while handling variations in different components.

2.1. Computation Offloading

A user expects the mobile system to run a variety of applica-
tions. However, a mobile system is constrained by the residual
battery capacity at any point in time, and the limited compu-
tation power of existing mobile processors [90]. Computation
offloading or cyber-foraging aims to enable energy or compu-
tation intensive applications on mobile systems by distributed
execution of mobile applications. This is done by migrating a
portion of the application state from the mobile device to re-
mote computation resources.

Figure1 shows the components of an offloading system. The
user executes a variety of mobile applications on the smart-
phone. The smartphone can access the Internet through one or
more wireless network channels. It migrates some portions of
the running applications to other computation resources avail-
able using the network. Such computation resources may be
the user’s own personal computer [84], a processor attached to
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an wireless access point [92], other mobile devices [36], a cloud
server [29] or even routers and switches in the network [50]. On
completion of the task on the remote server, the new program
state is transferred back to the smartphone.

In order to enable distributed execution of a mobile appli-
cation, the offloading framework must determine how to parti-
tion an application for scheduling on mobile device and cloud
servers. This is decided by the offloading decision engine, which
may be present either on the smartphone or on a pre-defined
server. The offloading decision engine needs to identify the
most energy or computation intensive tasks of the given appli-
cation. Using this information and the condition of the environ-
ment, it selects the part of the program to be offloaded for re-
mote execution. The decision taken by it determines the amount
of resources saved on the mobile device and the quality of ex-
perience (QoE) of the user.

2.2. Adaptation in Mobile Cloud Computing Systems
A mobile system is used in varying conditions. For exam-

ple, users can move while talking to someone on the phone, or
view videos while sitting in a car. This affects the network per-
formance. Similarly, users may switch to another application,
and thus change the workload on the offloading system. The
computation power of remote resources and the mobile device
also vary. A mobile system must be adaptive to these changing
conditions [89]. We define a system as adaptive if it is designed
to continuously monitor its environment and then modify its be-
havior in response to changing environmental conditions [25].

Offloading systems also need to be adaptive to changes in
operating environment [44]. They are affected by wireless net-
work characteristics and the capabilities of available computa-
tion resources. The workload also varies depending on the ap-
plications that are running on the smartphone. These variations
observed in the environment are shown in Figure 1. An offload-
ing system has to adapt to these changes while maintaining a
good QoE for the user.

In order to build an adaptive offloading system, a proper
understanding of the range of environmental variables and user
expectations is essential. The architect of an offloading frame-
work can then incorporate the user expectations while imple-
menting it. To meet the user expectations, the use case scenarios
can help in determining the importance of different parameters
for adaptation.

3. Mobile Cloud Ecosystem: Parameters and QoE Metrics

In this section, we define the mobile cloud ecosystem and
its various components. To study the impact on the user, we
define ways of measuring Quality of Experience (QoE).

Proper functioning of an offloading system depends on a
lot of operating parameters. The values of different parame-
ters can be transient and are hard to predict. Moreover, many
of them keep on changing during execution of mobile applica-
tions. Thus offloading systems need to ensure that they adapt to
these changes.

Figure 2 illustrates the effect of the mobile cloud ecosys-
tem on the user’s QoE. The ecosystem consists of three distinct

Figure 2: The figure depicts the source of different parameters in the mobile
cloud ecosystem, and the impact of the parameters on the QoE of the user.

Figure 3: A taxonomy of sources of variation in the entire mobile cloud ecosys-
tem. Each source of variation has various parameters associated with it, each of
which vary in different ways.

components – mobile, network and cloud system. These three
components of the mobile cloud ecosystem together affect the
QoE of the user. The QoE in turn, has four components – com-
pletion time, energy consumption, monetary cost and security.

3.1. Mobile Cloud Ecosystem

Based on different parameters of an offloading system, we
define an ecosystem. Each source of variation in the ecosystem
forms one component. The parameters used to measure such
variation are then listed for each component.

Figure 3 provides a taxonomy of the overall variations seen
in the environment. The environmental parameters are cate-
gorized into four components based on the source of variation
– application, network, execution platform and cloud manage-
ment. Each of these components have a number of environmen-
tal parameters in which variation is observed. The application
component has three parameters – degree of concurrency, work-
load heterogeneity and real-time constraints. The network com-
ponent has four parameters – bandwidth variation, intermittent
connectivity, multiple interfaces and signal handoff. The execu-
tion platform has five parameters – mobile processor, presence
of GPU, energy or time profile, memory architecture and cloud
architecture. Finally, cloud management consists of resource
allocation and workload management.

We now define the different sources of variation in a mobile-
cloud ecosystem.
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Table 3: A list of applications that have been optimized using offloading.

Application Offloading Solution
Face recognition MAUI [31], [67]
Image search CloneCoud [29]
Virus-scanning CloneCloud [29], [119]
Speech recognition COSMOS [97]
Text Editor Namboodiri & Ghose [79]
Chess game CloneCloud [29]
Gesture recognition Odessa [84]
Object recognition Glimpse [23]
Optical Character Reader Lin & Kung [71]
Indoor map reconstruction Chen et al. [20]
Video transcoding Zhang et al. [117]
Video encoding Native Offloader [64]
Web browser Native Offloader [64]
Social networking (Facebook, Twitter) CDroid [14]
Data compression Native Offloader [64]

3.1.1. Application
Smartphones allow users to install applications developed

by third-party developers. Leading mobile software reposito-
ries such as Google Play1 or Apple App Store2 have over a
million different applications. Computation offloading can im-
prove the performance of a variety of applications, including
text editors [79], virus scanners [119], games [31], object and
gesture recognition [23, 84], face detection [67], speech recog-
nition [19] and indoor map reconstruction [20]. A list of ap-
plications that have been optimized by different frameworks is
given in Table 3. These applications impose varying require-
ments on the mobile system. Handling these variations for an
offloading system is a major challenge.

Applications have different levels of concurrency. They
may be interactive or non-interactive. Moreover, the number
of applications executing simultaneously on the mobile device
varies. An offloading system must adapt depending on the changes
in all these parameters. The application level variations are re-
flected in the following parameters.

• Degree of concurrency: Most smartphone applications
are concurrent. There are two types of concurrency –
task-level and data-level. Applications that execute in-
dependent tasks have task-level concurrency [60]. Pro-
grams with stream data, such as multimedia applications,
have data-level concurrency [84].

• Workload Heterogeneity: Smartphones usually execute
multiple applications with different user expectations. For
example, a user might use a social networking app while
listening to music. Each of these different applications
may impose varying workload on the mobile system. A
video streaming application imposes high computation
and network costs. On the other hand, a social network-
ing app imposes less computation cost, but utilizes the
network after a fixed duration.

1http://play.google.com
2http://store.apple.com

• Real-time Constraints: Mobile applications may or may
not have real-time constraints. There are two types of
real-time constraints. Soft constraints, usually found in
streaming applications, require limited response time for
only a proportion of the given tasks. On the other hand,
hard constraints require guaranteed response time for each
task. They are found in gaming applications.

3.1.2. Network
Offloading systems use the wireless network to communi-

cate with the cloud system. The condition of wireless networks
is typically unstable, leading to frequent changes in the network
condition. Mobile systems need to adapt to these changes. The
variation in network conditions are typically measured using
the following parameters:

• Bandwidth Variation: The bandwidth of mobile net-
works varies depending on the user’s position and net-
work congestion. The variation in bandwidth is higher in
wireless networks as compared to wired networks. This
is due to multiple factors – user mobility, interference
from other users and distance of the user from the mo-
bile device to the cloud [3]. Bandwidth and latency of
wireless channels are usually difficult to predict. This
makes adapting to them challenging. For applications
with deadline constraints, variation in bandwidth or la-
tency is a major problem [79].

• Intermittent Connectivity: A mobile user may lose con-
nectivity to the network. This can happen due to mobility
of the user, or resource constraints of the server. A mobile
system must tolerate loss of connectivity, and continue to
function seamlessly [6].

• Multiple Interfaces: Mobile systems have multiple net-
work interfaces, like 3G, LTE or Wi-Fi. Each of these
interfaces have different characteristics related to their
coverage area, latency and bandwidth, and energy con-
sumption. An adaptive offloading system has to deter-
mine what to offload based on the network interface that
is used to connect to the Internet.

• Signal Handoff: Users of mobile devices may move from
one place to another while using them. This forces the
network interface to smoothly switch to a different access
point or hub while maintaining connectivity. This process
is called signal handoff. Handling signal handoff while
maintaining stable connectivity is challenging [68]. This
makes it essential to incorporate adaptation techniques to
handle signal handoff for offloading systems.

3.1.3. Execution Platform
The execution platform refers to both the mobile device,

and the remote cloud servers. The organization and hardware of
mobile devices as well as cloud systems have a lot of variation.
A mobile system must be adaptive to these changes, since it
is not feasible to develop a separate system for each individual
configuration. Variation in execution platform can be analyzed
using the following parameters.
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• Mobile Processor: The design of processors differs across
different mobile systems. For example, modern smart-
phones may have up to 8 processors [82]. Moreover,
some processors even on the same device may have dif-
ferent frequencies [27]. Apart from these variations, pro-
cessors can run at lower than maximum frequency to save
energy using Dynamic Voltage and Frequency Scaling
(DVFS). An adaptive mobile system that aims to improve
performance must schedule tasks according to the mobile
processor types.

• GPU: Most modern mobile systems have a Graphical
Processing Unit (GPU) to perform special tasks like graph-
ics rendering. Usually, the instructions for GPUs are
more complex than ordinary processors and thus, con-
sume more energy. An adaptive system has to decide how
to use the GPU based on the battery condition [74].

• Energy and Time Profile: The mobile device comprises
of many hardware components, like the processor sys-
tem, memory, network interfaces, storage, GPS and cam-
era. Each of these components have their own energy
characteristics. There is also significant variation across
phones. Thus, adaptive offloading systems need to auto-
matically determine the amount of energy consumed, and
develop the energy profile for different applications.

Apart from energy characteristics, each component of a
mobile device also has its own time characteristic. For
example, execution time increases with a reduction in
processor frequency. Thus, variation in processor fre-
quency, both within and across mobile devices, affects
the time profile [11].

• Memory Architecture: The mobile and cloud system
may have different memory layout and endianness. Mem-
ory layout refers to the address size of a single memory
location. For example, most server systems use 64-bit
virtual address, whereas mobile devices use 32-bit virtual
addresses. Endinanness refers to the order in which bytes
of a single word are stored in memory. Most cloud data
centers use little-endian storage layout, whereas mobile
devices may use either big-endian or little-endian. An
offloading system needs to handle these variations to en-
sure its correct working [64].

• Cloud Architecture: We define cloud architecture as the
type and network layout of remote computing resources
available to the smartphone user. A variety of computing
resources are nowadays available, such as user desktops,
other mobile devices in the vicinity, or cloud data centers.
Depending on the environment, the offloading framework
may use any of these computing resources to improve
smartphone application performance. These resources
have different processing power, and communication la-
tencies with the smartphone. The type of computing re-
sources used, therefore, affects the execution time of an
application.

Computing resources are organized in a hierarchical sys-
tem in the network, where the processors closer to the
smartphones have less powerful processors. For exam-
ple, data center servers have high computation power, but
have high network latency. In contrast, a user desktop
processor has low computation power, but has lower la-
tency since it is closer to the smartphone network. Some
offloading systems use cloud servers [31], while others
use processors attached to wireless access points [91].
Yet another type of systems use mobile devices in the
vicinity [77]. A combination of these systems can also
be used. For optimal usage, an offloading system must
adapt to resources that are available, and decide which
utilizing which remote computing resources will provide
good application performance.

3.1.4. Cloud Management
There are multiple ways of managing a cloud server. The

performance of cloud server affects the speed and cost of com-
putation. Variations in cloud management can be broadly mea-
sured using the following parameters:

• Resource Provisioning: Cloud resources include pro-
cessors, energy and software resources such as Operating
Systems and APIs. The user also usually has the option
to choose the number of processors within a server and
specify the speed of a particular processor. An offloading
framework needs to recognize and adapt to the type of
resources available in the cloud system [103].

• Workload Management: The workload on cloud servers
varies depending on the number of users they support.
The response times of the server varies depending on the
amount of workload on a single processor. Cloud server
systems use different load balancing techniques to handle
workload variation. Thus, offloading frameworks have to
adapt to the varying workload of the cloud server [99].

3.2. Quality of Experience (QoE) Metrics

The objective of offloading systems is to deliver high QoE.
To attain this objective, the architect of an offloading system
must have a clear idea of the way QoE is measured. For mo-
bile device users, the QoE consists of four parameters – energy
consumption, completion time, monetary cost and security.

3.2.1. Energy Consumption
The energy consumption is the total energy spent on the mo-

bile device to execute an application. This comprises of the en-
ergy cost of computation, the energy spent in transmitting data,
and the energy spent by other mobile components like memory,
storage and sensors. However, the total energy spent is higher
than the sum of energy spent by individual components [22].
Thus, realistic techniques of measuring energy consumption are
essential.

We consider only the energy consumption of the mobile de-
vice. This is because the objective is to prolong the battery life
of the mobile device. Thus, although the energy spent in the
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cloud has become increasingly important, it does not affect the
life of the battery. We therefore exclude it from this study.

3.2.2. Completion time
The completion time is the total time taken by the system

to complete the execution of the entire program for processor-
intensive applications. For applications with hard real-time con-
straints, it is the amount of time taken to execute a particular
task. Such applications require a deterministic guarantee of
completing a task within a fixed duration. Applications with
soft-real time constraints specify the amount of time along with
the percentage of tasks that must be completed. Soft-real time
constraints require statistical guarantees of performance [18].

3.2.3. Monetary Cost
The monetary cost consists of two distinct components:

• Network Usage: Network usage refers to the cost of
communication between the mobile device and the cloud
system. This may be charged by the mobile or the cloud
service provider or both. It is equal to the sum of inbound
and outbound traffic from the mobile to the cloud.

• Server Usage: The cost of renting the server constitutes
the second component of monetary cost. This usually
depends on the number of virtual servers, and the type of
cloud organization that are used by the offloading system.

3.2.4. Security
In the context of offloading systems, security refers to main-

taining confidentiality of private data and integrity of computed
data. Offloading transfers data to other computation resources.
This data might contain information private to the user. More-
over, the mobile device has to trust the computation resource
that the software component is executed correctly [109].

4. Task Offloading Problem

The offloading decision problem is solved by the decision
engine, which is part of an offloading system. The solution of
this problem gives the points of execution of each task of an
application. Thus, it plays a critical role in the amount of com-
putation resources saved and the quality of experience (QoE) of
the user.

In this section, we describe a formulation of the offloading
decision problem. We first discuss the ways of modeling the
system, and then explain the formulation based on this model.
Finally, we describe how this formulation can be used to de-
velop an adaptive solution, and the challenges of increasing
adaptiveness.

4.1. System Model

An offloading system consists of three main components –
the mobile application, the network and the execution platform.
The decision problem formulation needs to have a mathemati-
cal model of each of these components.

Figure 4: Directed Acyclic Graph (DAG) representation of a mobile application
where the vertices represent tasks and the edges represent dependencies among
tasks. The shaded vertices represent tasks that must be executed locally.

A mobile application is represented as a Directed Acyclic
Graph (DAG). The vertices of the DAG represent different tasks
or components of the software. The edges represent the data
dependencies among the tasks. For example, an edge from the
task vi to vj (usually denoted as (vi, vj) or (i, j)) denotes that
the output of task vi is needed to execute task vj . Moreover,
some of the tasks might depend on some sensors available only
on the mobile device, such as camera or GPS. These tasks may
only be executed on the mobile device.

Each task and dependency of an application has one or more
costs associated with it. This cost can be either energy, time,
bandwidth or any other limited resource. The cost associated
with a task is incurred when the task is executed locally. Execu-
tion on a remote computation resource incurs a fraction of the
cost, depending on the type of cost and computation resource
available. For example, the energy cost incurred on executing
a task remotely is zero, whereas the time cost depends on the
speed of the remote computation resource compared to the mo-
bile device. The cost associated with a dependency is incurred
when the two tasks are executed on different points of execu-
tion. This is known as migration cost, since it is incurred in
order to migrate the output from one execution device to an-
other. Moreover, this migration cost decreases with an increase
in the quality of network performance.

The execution platform consists of one mobile device (smart-
phone) and some other remote computation resources, like cloud
server or wireless access points. All these computation resources
contain one or more processors, each having its own time and
energy characteristics. We also assume that execution of an ap-
plication must begin and end at the mobile device.

An example of a DAG representation is shown in Figure
4. In this figure, the tasks v1, v4 and v9 must be executed on
the mobile device. Three tasks, v3, v5 and v8 are dependent
on task v2. Moreover, the tasks v7 and v9 also depend on two
different tasks. This model is general in nature, and can be used
to describe any mobile application.

4.2. Formulation

We now use our system model to develop a formulation of
the decision problem. This allows us to discuss how adaptation
can be incorporated into this decision problem in later sections.

Let Etot denote the total energy to execute the application.
Also let Eloc and Emig denote local execution energy and en-
ergy to migrate data between mobile device and cloud server.
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Table 4: Adaptive offloading techniques along with parameters that are considered during adaptation. Each marked cell denotes that the offloading technique in the
proposed offloading framework adapts to changes in that parameter.
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Implementation-based Studies
MAUI [31] 2010 X X X X
Misco [36] 2010 X X X
Odessa [84] 2011 X X X X X X
CloneCloud [29] 2011 X X X X X
ECOS [47] 2012 X X X X
Serendipity [98] 2012 X X X X X
Yang et al. [114] 2013 X X X X
Abebe & Ryan [1] 2012 X X X
Kwon & Tilevich [63] 2012 X X
ThinkAir [60] 2012 X X X X X X
Eom et al. [40] 2013 X X X X X X
ENDA [66] 2013 X X X
TDM [74] 2013 X X X X
COSMOS [97] 2014 X X X X X
Gao et al. [45] 2014 X X X X
Hermes [56] 2015 X X X X X
DREAM [62] 2015 X X X X X X X X
Tango [48] 2015 X X X X X
Li & Gao [69] 2015 X X X

Simulation-based Studies
Fesehaye et al. [43] 2012 X X X X
MapCloud [85] 2012 X X
Balakrishnan & Tham [11] 2013 X X X X
CARMS [57] 2013 X X
Chen et al. [21] 2013 X X X
Lin et al. [72] 2013 X
MuSIC [86] 2013 X X X
Mobile fog [50] 2013 X X X X X X
RMCC [4] 2014 X X
Ready-Set-Go [110] 2014 X X
Niu et al. [80] 2014 X X
Foreseer [113] 2014 X X X
Chen et al. [22] 2014 X X X
Lin et al. [73] 2014 X X X X
Deng et al. [33] 2015 X X X X
Chen [24] 2015 X
Zhang et al. [118] 2015 X X
Sood & Sandhu [103] 2015 X X
MALMOS [39] 2015 X X X
Tong & Gao [104] 2016 X X X X
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Then, the total execution energy Etot is the sum of local execu-
tion energy (Eloc) and migration energy (Emig):

Etot = Eloc + Emig (1)

Similarly, let T tot denote the finish time of the application.
Also, let T loc, T ser and Tmig denote the execution time on
mobile device, time to execute on server and time to migrate
data. Then, the finish time T tot is:

T tot = T loc + T ser + Tmig (2)

The objective of the formulation is to minimize time and/or
energy costs. The optimal solution of the various individual
costs can vary. One common approach is to minimize one cost
while applying some constraint on other costs. For example, a
possible way is to minimize energy, while limiting the comple-
tion time:

Min Etot (3)

subject to: T tot < D, (4)

where D represents a time deadline by which the execution of
an application must be completed.

We now explain how our problem formulation can be uti-
lized to study adaptiveness of an offloading system. The values
of Emig and Tmig are affected by changes in network condi-
tions. The values of Eloc and T loc depend on the nature of the
workload and concurrency within an application, and the archi-
tecture of the mobile device. Finally, T ser is determined by the
nature of the cloud server and cloud management.

Frequent sampling of these parameters at run-time for mak-
ing offloading choices makes the decisions more adaptive. How-
ever, solving the problem formulation at run-time consumes
time and energy. If all the parameters are varying, solving the
problem formulation becomes impractical at run-time. Thus, to
obtain a solution in acceptable time and energy, offloading sys-
tems do not handle all variations of the ecosystem. Instead,
each offloading system handle some of the variations, while
making some assumptions about other parameters. Table 4 sum-
marizes adaptiveness of offloading solutions to the different pa-
rameters of the mobile cloud ecosystem.

5. Handling Application Variations

A large variety of mobile applications are run on mobile de-
vices. The expectations of the user from each of these mobile
applications vary. For example, a user expects an application
having lot of interaction to have fast response time. However,
for a computation-intensive application running in the back-
ground, it is more important to reduce its energy consumption.
An offloading system needs to handle these multiple applica-
tions and sometimes the conflicting expectations from its users.

In this section, we discuss how offloading systems handle
the variation in applications. Variation within applications af-
fect all aspects of the user’s quality of experience (QoE).

5.1. Degree of Concurrency

The amount of parallelism that can be exploited increases
with an increase in the concurrency of an application. Thus,
applications having higher amount of concurrency tend to give
better performance using offloading [60]. However, the offload-
ing decision problem for a sequential application is much more
scalable. Moreover, there can be different types of concurrency
in an application – at the task (or method) level, and at the data
level. The type of concurrency available for an application also
has an influence in the performance of an offloading system.

We first discuss the scalability issues related to concurrency.
We then discuss how the type of concurrency influences the
design decision of an offloading system.

Improvement in scalability has two major advantages. First,
a highly scalable solution allows the offloading decision algo-
rithm to run on the mobile device. Secondly, it allows the of-
floading system to take a more optimal decision. Both these
advantages lead to energy and time savings.

The offloading decision problem is polynomial for sequen-
tial applications [73]. For such cases, the decision problem for-
mulation can be resolved to the shortest path problem. This
allows an offloading system to schedule larger applications in
less time.

For applications having task-level concurrency, the offload-
ing decision problem is known to be NP-Complete [106]. Thus,
to build more scalable techniques for concurrent applications,
efficient algorithms to partition such applications are required
[30]. One heuristic used by ThinkAir is to compare the amount
of computation involved for each thread and the migration costs
[60]. If the local computation cost exceeds the migration cost,
only then execution is performed on the cloud system using mi-
gration. Another work, Hermes gives a polynomial approxima-
tion algorithm for applications with limited amount of paral-
lelism [56].

Applications having data-level concurrency have more flex-
ibility in execution. For some applications, like computer vi-
sion, the output precision reduces with an increase in the num-
ber of threads. This reduction in precision is acceptable upto a
certain level. Thus, the offloading system may decide the op-
timal level of concurrency. Odessa is an example of such an
offloading system [84].

5.2. Workload Heterogeneity

Most offloading systems developed so far have discussed
only the execution of a single application at a time. Smartphone
devices have multi-tasking operating systems and usually run
multiple applications at the same time.

Offloading systems need to model multiple applications for
dealing with realistic use cases. This is because, the energy con-
sumption involved in communication depends not only on the
amount of data, but also on the time when the network interface
was last used. This occurs because interfaces of radio networks
remain switched on for a few seconds even after transmission
is complete. A request for transmitting data takes less energy if
the network interface is already on. However, if no such request
is sent, then the energy required to keep the interface running is
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Table 5: A summary of adaptation techniques used by offloading frameworks to handle application variations.

Variation Parameter Offloading Framework Adaptation Technique

Degree of Concurrency
ThinkAir [60] Uses past execution history to modify partition of application graph
Hermes [56] Uses approximation scheme to generate partition of application graph
Odessa [84] Modifies the number of threads depending on workload

Workload Heterogeneity Ready-Set-go [110] Merges offloading data from multiple applications to reduce network tail energy
Real-time Constraints Li et al. [67] Modifies accuracy of face-recognition depending on power constraint

wasted. Experimental results show energy saving upto 60% by
careful timing of communication requests when radio networks
are used[94].

Studies have shown that finding the optimal solution for
multiple applications is NP-hard [32]. One such study has pro-
posed using coalesced offloading, where the algorithm tries to
consolidate the network transmissions of different applications.
Experiments on real-world use cases have shown energy saving
of 21% over naive scheduling [110].

5.3. Real-Time Constraints

The amount of interactiveness and computation involved in
an application largely determines how suitable it is for offload-
ing to the cloud. This is because users can interact with an ap-
plication only from the mobile device. Thus, with an increase
in the amount of user interaction involved in an application, it
becomes more challenging to offload applications [107] [79].
In order to satisfy such constraints, the offloading system has to
bring back the state of execution to the mobile device in order
to allow the user to interact with the application. This increases
the number of migration from the mobile device to the cloud
and vice-versa.

For applications having very little amount of user interac-
tion, it is possible for the developer to partition the application.
This is because, in such cases, much of the computation can be
performed on the cloud. Applications for scientific computing
are suitable for such use cases. Such applications, like Matlab
Mobile3, are available in the mobile applications market.

Applications with hard real-time constraints are more dif-
ficult to offload. For such applications, such as multiplayer
games or augmented reality, the architecture of the cloud is an
important factor [43]. This is because of the fact that the la-
tency involved in migrating the tasks of such applications must
be low. Such applications are not yet widely used along with
cloud systems.

Applications with soft real-time constraints, such as stream-
ing, can be augmented using offloading. Such systems usually
monitor the network carefully to ensure that the available con-
nectivity is able to support the required amount of communica-
tion. Such offloading techniques can even enable more complex
applications, such as gesture recognition [84], face recognition
[67] or peer-to-peer streaming [114].

The presence of real-time constraints makes it crucial to en-
force privacy of communications. This is because offloaded
applications with real-time constraints frequently migrate data

3http://www.mathworks.com/mobile/

back to the mobile device. This makes it easier to intercept the
user’s data used by applications.

5.4. Discussion

The workload on the mobile device differ based on the num-
ber and type of applications being run. Thus, for some appli-
cations, such as scientific computing, the amount of data trans-
fer needed for offloading is fixed. Other applications, like face
recognition or peer-to-peer streaming have more scope of re-
ducing the amount of data transfer by compromising on accu-
racy of output. So far, each offloading framework handles a
particular type of application in order to avoid the complexity
of adapting to the different types of running applications.

One major challenge towards utilizing offloading for more
applications is the presence of native applications. Many com-
putation intensive applications, such as video players, web browsers
and games have a lot of native code. The instruction set ar-
chitecture and memory layout of mobile devices and the cloud
servers are usually different. This makes it much harder to of-
fload such applications with native code. Recently, Lee et al.
[64] showed a way of offloading native code by utilizing a com-
piler that generates intermediate code for both mobile device
and cloud server. At run-time, it translates the two types of
machine code before migrating data. Using this technique, op-
timizing more computation-intensive applications has become
possible.

Most studies have focused on utilizing offloading for one
application at a time. From Table 4, we note that few stud-
ies have focused on offloading multiple applications. Execut-
ing multiple applications lead to higher utilization of processors
and thus increases energy consumption on the mobile device. It
also increases the amount of workload variation on the mobile
device. Since smartphones run multiple applications, it is nec-
essary for offloading systems to handle such use cases. Thus,
better techniques of adapting to these cases are needed to han-
dle different workloads.

6. Handling Network Variations

The communication channel is one of the most important
components of a mobile cloud system. Mobile systems utilize
wireless network interfaces, which have varying bandwidth. This
makes it challenging to utilize the network channel to provide
predictable quality of experience (QoE). In this section, we dis-
cuss handling of these challenges by offloading systems.
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Table 6: A summary of adaptation techniques used by offloading frameworks to handle network variations.

Variation Parameter Offloading Framework Adaptation Technique

Bandwidth Variation

MAUI [31], CloneCloud [29] Detects bandwidth before offloading
Foreseer [113] Modifies static partition at run-time
Niu et al. [80] Set bandwidth variable value at run-time
Wang & Dey [108] Bit-rate modification at run-time based on bandwidth

Intermittent Connectivity
MAUI [31] Periodically checks connectivity of mobile device with server
Kwon & Tilevich [63] Checkpoints applications at fixed points
COSMOS [97] Predicts loss of connectivity and checkpoints applications

Multiple Interfaces
Einsiedler et al. [38] Allows network operator to choose interface based on congestion
Qato [52] Uses Wi-Fi Direct to find best network interface among multiple mobile devices

Signal Handoff

ENDA [66] User position prediction to modify the decision design
MuSIC [86] Decides the server platform for mobile device based on predicted user position
Deng et al. [33] Assumes random movement of mobile device to predict signal strength
CloudNet [93] Migrates VM without any user downtime

6.1. Bandwidth Variation

In order to deal with varying bandwidth, MAUI and CloneCloud
detect the bandwidth by sending data packets before offload-
ing. This bandwidth is then used to calculate the components
that should be offloaded to the cloud. The drawback of this ap-
proach is that bandwidth variation in the middle of execution
cannot be handled. Thus, the application performance becomes
unpredictable if the bandwidth changes suddenly.

Bandwidth variation in the middle of execution is handled
by Foreseer [113]. Foreseer also uses static partitioning like
MAUI and CloneCloud. However, it makes modifications to
the static partition at run-time based on the bandwidth varia-
tion. Although this technique has not been tried in real imple-
mentations, simulation results suggest energy savings of over
35% compared to static partitioning techniques.

Niu et al. [80] propose using a different technique to handle
bandwidth variation. Their work performs static partitioning,
but uses the bandwidth as a variable. By changing the value of
the bandwidth variable, it is possible to generate different parti-
tions. At run-time, it senses the bandwidth value and partitions
the graph by setting it to the right value.

Streaming applications can gracefully degrade in response
to lower bandwidth by lowering their bit rate [108]. Thus, of-
floading of these applications are more tolerant to varying band-
width.

6.2. Intermittent Connectivity

It has been observed that wireless network interfaces are
prone to loss of connectivity [97]. This is due to variation in
the number of users, and also mobility of the user. Loss of
connectivity in the middle of execution may force execution
from the beginning.

Many studies have tried to improve the tolerance of offload-
ing systems to loss of network connectivity. MAUI periodically
checks the mobile device’s connectivity with the server after
migrating [31]. If connection is lost, it waits for a pre-specified
time to begin local execution. The actual time that the offload-
ing system should wait is an important factor determining the
execution time in case of failure. Xu et al. [112] show that us-
ing passive measurements of network connection, it is possible

to estimate the probability of network failure. Park et al. [83]
show that the loss of connectivity can be explained by the mo-
bility pattern of the mobile device. It uses a Markov Model to
decide the likelihood of losing access to the server. Kwon &
Tilevich [63] suggest intelligent checkpointing of methods in
order to make the execution more tolerant to loss of connec-
tivity. Finally, these techniques are utilized in the offloading
system COSMOS [97].

Although these techniques handle loss of connectivity, they
reduce predictability of performance of the offloading system.
Thus, energy consumption and execution time may increase
more than expected. They do not provide acceptable perfor-
mance for applications having high user interaction [79].

6.3. Multiple Interfaces

Modern mobile devices contain multiple network interfaces,
such as Wi-Fi, EDGE, 3G and LTE. Most offloading systems
currently available do not explicitly select the network inter-
face. Instead, the mobile operating system picks the interface
with the strongest signal, or with the highest bandwidth. For ex-
ample, if access to Wi-Fi is available, then the offloading system
prefers Wi-Fi to 3G because Wi-Fi offers better bandwidth.

Mehmeti & Spyropoulos [78] show that efficiency of many
of the offloading tasks can be improved by waiting for access to
Wi-Fi. Thus, much of the traffic from cellular network can be
diverted to Wi-Fi interface, leading to much higher energy sav-
ings. However, this method may increase the completion time
of applications. Background applications, where completion
time is not an important objective, may utilize this technique.

Another proposed technique of dealing with varying inter-
faces is to allow the network operator to determine the appro-
priate interface [38]. Network operators can choose an interface
based on the amount of traffic, the type of service needed by the
user and amount of congestion in the network. This allows a
more efficient usage of the available network resources. More-
over, based on the user’s requirements, the network operator
can even allow two different interfaces to be used at the same
time. However, the gains are obtained at the cost of flexibility
for the user.
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A similar technique of utilizing the best available network
interface is shown in Qato [52]. In this system, several mobile
devices in the vicinity can collaborate through Wi-Fi Direct to
find the network interface having the least congestion. This
interface can then be used for offloading by all the devices in
the vicinity. The challenge in this case is to develop sufficient
economic incentive so that users find it beneficial to use this
facility.

One development likely to have major impact on future of-
floading systems is the development of 5G network interface.
5G provides a parameter known as edge rate, which is the min-
imum bandwidth guaranteed to each user [9]. This makes pre-
dicting bandwidth much easier, and is likely to enable better
handling of real-time applications using cloud systems.

6.4. Signal Handoff

One serious challenge that has hindered the adoption of of-
floading is handling user’s mobility [68]. Mobility of the user
leads to signal handoff and makes the connectivity unstable.

Much of the work related to managing signal handoffs in-
volves predicting the user’s mobility patterns. This can then be
used to decide the server to which the application should be of-
floaded. Bartendr showed that user track prediction is possible
by observing prior movement of the user [94]. ENDA utilized
user prediction to optimize the decision design of its offloading
system [66]. MuSIC showed that if the user’s mobility pattern
are known in advance, it is possible to optimally decide the best
server platform [86].

An alternative way of handling signal handoff is to assume
random movement of mobile devices. Based on this assump-
tion, the signal strength within a particular region is used to
obtain the data rate. This data rate can provide a better estimate
of the time required to offload a particular task. This technique
is used in Deng et al. [33].

The approaches discussed so far do not deal with unpre-
dictable user movement. Moreover, there is no guarantee that
the same network bandwidth is available whenever the user
changes position. For robust mobility support, these challenges
must be handled.

Offloading systems with multiple layers of cloud must han-
dle another problem associated with mobility. For such systems
one layer of computation resources, known as cloudlet, is usu-
ally closer to the mobile device. If the user moves away from
it, the virtual machine (VM) should be migrated. CloudNets
proposes a technique of handling such migrations without any
user downtime [93]. In this technique, known as live migration,
the data is copied from one cloud to another in the background.
During this process, the VM goes on providing service to the
user.

6.5. Discussion

The variation in network performance hurts the quality of
experience (QoE) of the user. A lot of techniques have been ex-
plored to mitigate the effect of such variation. These techniques
try to predict network performance and alter the behavior of the
offloading framework accordingly. Such prediction is usually

challenging due to the interplay of various factors, such as net-
work congestion, type of network used and movement of user.

An alternative to network prediction is proposed in Tango
[48]. In this technique, the application is executed both on
the mobile device and the cloud server. The output from the
replica that comes first is forwarded to the user, while the other
replica’s output is suppressed by the offloading framework. Us-
ing this technique, it is possible to avoid the complex process
of network prediction and runtime modification of graph par-
tition. The disadvantage of this approach is that this does not
guarantee any energy saving.

A technique that is commonly used to mitigate the impact
of network variation is reduction of migration data. Careful
selection of data by optimizing the offloading framework can
reduce the amount of migration data [69].

One development that is likely to have a major impact on
mobile cloud systems is Software-defined Networking (SDN)
and network virtualization [28]. SDN enables developers to
program the routing algorithms through software. Thus, de-
velopers can route network packets based on the requirements
of the application. The study me-SDN (Mobile Extension of
SDN) proposed extending the SDN paradigm to mobile de-
vices in order to make the network traffic application-aware
[65]. This allows it to better handle network traffic having real-
time constraints. However, so far it is not possible to provide
any performance guarantee using me-SDN.

An interesting factor involved in managing these variations
is the monetary cost that the user is willing to spend. A more
predictable network can be obtained by the user by spending
more on network. For example, offloading performs better us-
ing LTE than under 3G, but LTE costs more. Similarly, if the
user pays for better cloud service, it is possible for the cloud
service provider to reduce the server latency of offloading re-
quests.

We also note from Table 4 that most studies do not consider
signal handoff. However, user mobility leads to signal handoff
and bandwidth variation. Thus, adaptation to user mobility is
essential. So far, most studies that handle user mobility are
based on simulation. These studies predict the position of the
user based on past user positions. More real-world experiments
using offloading systems are needed to validate these studies,
and provide support for signal handoff.

7. Handling Execution Platform Variations

The underlying architecture of the offloading system is an
important consideration in the design of system architecture.
Moreover, the architecture of the mobile devices as well as that
of the cloud system is constantly evolving. This makes it even
more important for an offloading framework to adapt to differ-
ent systems available in the market.

7.1. Mobile Processors
Modern smartphones have up to 8 processors [82]. An in-

crease in the number of mobile processors reduces the com-
pletion time of an application, provided it has sufficient paral-
lelism. However, it increases energy consumption.
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Table 7: A summary of adaptation techniques used by offloading frameworks to handle execution platform variations.

Variation Parameter Offloading Framework Adaptation Technique

Mobile Processors
Balakrishnan & Tham [11] Uses an optimization solver to change frequency levels
DREAM [62] Sets frequency level using Lyupanov optimization to minimize energy

GPU TDM [74] Offloads tasks for GPU to server based on data size
Energy and Time Profile ThinkAir [60] Uses energy model to estimate energy of individual tasks

Memory Architecture
MAUI [31], CloneCloud [29] Uses intermediate language to hide memory architecture differences
Native Offloader [64] Generates two application binaries to handle memory architecture differences

Cloud Architecture

Zhang et al. [120] Uses both cloudlet and cloud server
CARMS [57] Uses user location to determine best combination of cloud resources
Abebe & Ryan [1] Adapts execution partition depending on available cloud resources
CDroid [14] Tightly integrates mobile device with cloud server
Misco [36] Offloads data-intensive tasks to nearby mobile devices
RMCC [4] Uses centralized controller to distribute mobile tasks
Mobile Fog [50] Proposes a programming model to offload to multiple devices

The first offloading systems developed assumed a single
processor system [31, 29]. Recent works have shown that mod-
ifying the algorithm to optimize the completion time for mul-
tiprocessor systems is possible [11]. However, the effect on
energy consumption is still not clear due to lack of a relevant
energy model.

In order to limit the amount of energy consumption, mobile
processors now have an inbuilt scheme of running at different
frequency levels. This is known as Dynamic Voltage and Fre-
quency Scaling (DVFS). In this scheme, a processor that runs
at lower frequency takes more time to execute a task, but con-
sumes less energy. It allows the application scheduler to suit-
ably decrease the energy consumption at the cost of higher com-
pletion time.

An offloading system must determine the number of fre-
quency levels that each mobile processor supports. It needs
to have an algorithm that can adapt to the possible frequency
levels. Balakrishnan & Tham [11] propose an optimization for-
mulation to partition the application considering the possible
frequency levels. Chen et al. [21] show that the battery dis-
charge rate depends on the interaction between the strength of
wireless signal and the DVFS level of processors. DREAM
uses Lyupanov optimization to determine the frequency level
that minimizes energy consumption while keeping the number
of waiting tasks below a fixed level [62]. Thus, the energy con-
sumed by these components must be considered together in an
offloading system.

7.2. GPU

Modern mobile systems have an inbuilt Graphics Processor
Unit (GPU) in them. This enables faster processing of appli-
cations with data-level parallelism such as image processing or
video decoding.

The relationship between energy consumption and comple-
tion time in the presence of GPU is shown in Ternary Deci-
sion Maker (TDM) [74]. This work shows that for moderately
computation-intensive jobs, local GPU processing can consume
less energy than offloading to the cloud. Thus, the algorithm
used by the offloading system must consider the presence of a
local coprocessor.

7.3. Energy and Time Profile

The energy consumed by the execution of an application is
affected by the type of hardware used. This includes the type of
processor used, the presence of the coprocessor, the type of net-
work interface and the capacity of the battery. For an offloading
system to take correct decisions, it must be able to adapt to these
changes in hardware without any manual involvement.

Most offloading systems, such as MAUI, CloneCloud or
ThinkAir, depend on energy models to determine the energy
consumption of an application. These energy models compute
the energy consumption by looking at either the source or the
intermediate code of the application. Thus, these systems devel-
oped their own energy models using specialized high-precision
power monitors. However, this is only feasible on a limited
number of different mobile devices. For wide use of offloading,
a more automatic system of estimating energy is needed.

Studies have shown that an accurate energy model can be
developed automatically. The tool PowerBooter develops an
automatic energy model for each phone [116]. It calibrates the
energy model by running a specific hardware component on the
mobile device over a period of time. The difference in volt-
age can be used to compute the amount of energy consumed
by looking at the discharge rate curve available in the battery’s
manual. While this can handle the variation in mobile hard-
ware, the power model for each battery has to be calibrated
manually.

Sesame shows a method of handling multiple batteries au-
tomatically [35]. It uses the registers exposed by the battery’s
interface to measure the remaining energy. This can be used to
study the applications running, and to find their energy profile
over a period of time. In this way, an energy model can be built
automatically for each mobile device and battery.

One problem with these profiling techniques is that they do
not consider the impact of user input on the execution pattern.
The user input plays an important role in determining which
methods of an application get executed. Thus, it has a major
impact on energy consumption. Gao et al. [45] model these
variations using a semi-Markov model to arrive at a more accu-
rate estimate of the energy consumption.
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7.4. Memory Architecture

The memory architecture, such as layout and endianness,
can vary between mobile device and cloud server. An offload-
ing framework must handle such differences for it to be usable
across multiple mobile devices and servers.

The most common way of handling such variations is to use
virtual architectures such as Dalvik VM [29] or Microsoft .NET
Common Language Runtime [31]. This hides the architectural
variations of the two systems and lets the developer use a cloud
server without any additional software engineering. However,
much of the computation-intensive code of common applica-
tions such as video decoders or web browser is written in native
code (C or C++). Native code cannot be offloaded using this
method. If access to source code is available, one proposed
way is to generate two distinct versions of the code [64].

7.5. Cloud Architecture

We define cloud architecture as the type and network lay-
out of computing resources, such as user desktops, other smart-
phones in the vicinity and cloud data centers, that are available
to the smartphone. For example, a user desktop usually con-
sists of a single multi-core system, and is usually close to the
smartphone. A public cloud data center has multiple proces-
sors, with low latency among them, but is much farther from
the smartphone. Thus, the type of computing resource used has
a major effect on the application execution time.

There is a trade-off among computation power of processors
and network latency. This is because processors closer to the
smartphone, such as desktop systems, have lower computation
power compared to the ones that are farther away, such as data
center servers. The rapid increase in the number of available
computing devices makes offloading to them a feasible option.
This is especially true for latency-sensitive applications, where
increase in latency has a major impact on quality of experience
(QoE). Thus, reducing latency by offloading to nearby devices
but with less computation power might be more attractive than
offloading to cloud data centers.

One proposed way of lowering latency is to maintain com-
putation resource closer to the mobile device, known as cloudlet.
Unlike a cloud server, a cloudlet is located at a one-hop distance
from the smartphone. However, it has less computation power
compared to a cloud server. Cloudlets are attached to wireless
access points to enable easy access from mobile devices.

In order to handle applications with real-time constraints,
multiple hierarchy of cloud systems has been suggested. This
includes using a combination of cloudlet and cloud systems.
Satyanarayanan et al. [92] show that cloudlets can help applica-
tions improve performance in hostile environments, such as war
and disaster-relief. Zhang et al. [120] show that the QoE can be
improved using both cloudlets and cloud systems as compared
to just one of them. MAP-Cloud proves that finding the opti-
mal solution to determine the execution points of components
is NP-hard [85]. It proposes some heuristics that can be used
to partition the application to save energy. CARMS uses loca-
tioning to select the best combination of cloud resources [57].

However, these approaches require installation of additional in-
frastructure, since cloudlets are not readily available on wireless
access points [1].

A multi-level hierarchical mobile cloud system requires a
relevant pricing model. So far, most studies have not considered
the cost that the user has to pay to the cloud service provider.
For widespread adoption, a pricing scheme acceptable to both
the user and the cloud service provider is needed.

Another technique of reducing latency is utilized by CDroid
[14]. CDroid tightly integrates the cloud server to a mobile
device. It sends the state information of an application when the
mobile device is idle. When a computation-intensive request is
received by the mobile device, most of the information required
to handle is thus already available on the server. In this way, it
utilizes a dedicated server to cache application state information
in order to reduce the amount of data transmission.

One offloading technique proposed is utilization of other
mobile devices available nearby. The advantage of this ap-
proach is that at a particular point, a large number of mobile de-
vices are usually available. Misco offloads data-intensive appli-
cations in order to enable data-level parallelism [36]. Serendip-
ity implements fine-level offloading at task level to nearby mo-
bile devices to speed up execution [98]. ECC investigates the
devices to which offloading is attractive based on their proxim-
ity, current situation of battery and processor, and user objective
[15]. RMCC suggests having a centralized controller to allocate
tasks across mobile devices in the vicinity [4].

Offloading to other mobile devices provide a relevant eco-
nomic incentive to the users of the remote devices. Execution
on the remote devices consumes energy, reducing their battery
life. One study has shown using mathematical modeling that
cooperation among remote mobile devices improves the battery
life of all of them. Chilipirea et al. [26] propose using a mone-
tary incentive scheme where some mobile users may specify a
selling price for utilizing their computation resources. The user
who needs access to remote resources can specify the maxi-
mum buying price. If this condition is satisfied, then the mobile
device offloads to the device offering the lowest selling price.
These techniques assume that the same mobile devices are al-
ways available in the system.

Although utilization of other mobile devices has potential,
it carries a high security risk. This is because, it is possible for a
malicious remote device to permanently store the user’s data. It
might also be possible for the remote device to make the mobile
application more vulnerable to security threats. Abolfazli et al.
[5] suggest sandboxing and signing of the remote system to de-
tect any modifications. However, the security of such a system
has not been tested yet.

A recent proposal suggests offloading to network devices
such as routers and switches. This is known as fog comput-
ing [16]. This does not require new infrastructure, and also
has low latency. However, the challenge is to handle the very
high level of heterogeneity among the different network de-
vices. Mobile fog proposes a programming model to enable
fog computing for mobile devices [50]. The primary challenge
of using fog computing is in the handling of architectural het-
erogeneity. Conventional frameworks that support architectural
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heterogeneity like openCL are not supported by network de-
vices [40]. So far, no offloading system is available that utilizes
fog computing.

7.6. Discussion

In this section, we explained the different approaches of
handling variation in underlying system architecture. A number
of techniques, such as automatic power model generation, has
been developed to handle such variation. However. offloading
frameworks do not leverage many of these possible techniques.
As shown in Table 4, offloading frameworks avoid the complex-
ity of adapting to different mobile architectures by studying its
working on one execution platform. For example, few of the
available offloading systems consider the impact of GPU on the
offloading decision problem. They also do not handle different
mobile processor systems. Further research is needed to under-
stand the impact of such hardware differences on the QoE.

There is also increasing focus on inter-operation among dif-
ferent cloud systems. So far, there are few offloading systems
that support utilization of multiple cloud systems. For widespread
adoption, offloading systems need to handle these variations in
both mobile and cloud systems. More studies are required to
understand the behavior of offloading systems to such changes
in execution platform.

8. Handling Cloud System Management Variations

There are many different cloud service providers with a va-
riety of policies on cloud management. The management of
resources directly affect the response time of cloud servers. It
also affects the monetary cost of execution, since cloud service
providers charge a cost to the users based on the amount of re-
sources used. The security and privacy policies of cloud service
providers also affect the security of mobile users.

8.1. Resource Provisioning

Cloud resources include hardware resources such as proces-
sors, memory and storage, software resources such as Operating
Systems (OS) and APIs as well as power. Resource provision-
ing policies directly affect the response time of the cloud server
and the monetary cost of computation. For example, increasing
the number of processors and amount of memory made avail-
able to a user reduces the response time of the cloud server.
Similarly, cost of energy direct affects the monetary cost of us-
ing cloud service. Sometimes, users may also have to pay to
use OS and APIs.

A lot of research has been done to deal with resource pro-
visioning for different types of cloud workloads. For mobile
workloads, OSullivan & Grigoras [81] present a cost model
based on the number of VMs used and the amount of commu-
nication data. Sood & Sandhu [103] propose a technique of
estimating the amount of cloud resources needed for a mobile
device. It checks the mobile device’s Operating System (OS),
number and nature of installed applications and network condi-
tion of mobile device to initially allocate cloud resources. When
an application is running, it uses a neural network to predict the

amount of cloud resources that will be required by the offload-
ing framework. This helps the cloud server use the resources
available to serve more users.

8.2. Workload Management

Cloud servers need to serve multiple mobile devices. De-
pending on the number of mobile devices being served by a
cloud server, the response time of a cloud server changes.

The first offloading system that handled the problem of vary-
ing load on the server was ThinkAir [60]. ThinkAir utilized the
current latency to decide whether to offload. However, this ap-
proach cannot handle increase of server load during execution.
This may increase the total execution time of the application.

Loadsense showed that the latency of cellular networks is
primarily dependent on the load on the base station [17]. Us-
ing passive measurements of the total power emitted, and using
clustering techniques to compare the different latency values,
it was able to obtain an estimate of the total network latency.
This can be used to improve by offloading systems to estimate
latency. Chen [24] designed an algorithm based on game theory
to calculate the best possible time to offload a task.

Other works focused on managing the workload of the cloud
server. One way is to vary the amount of approximation in
streaming applications [99]. The amount of energy consump-
tion and execution time reduce with an increase in the amount
of approximation. Thus, the increase in latency is compensated
by reducing the execution time through variation in streaming
quality.

The concept of approximate computing can even be ex-
tended to handle varying network latency. Ravindranath et al.
[87] showed that a server can study the network condition to
obtain an estimate of the network latency. Based on this, the au-
thors proposed setting a response time target of each task, and
adjusting the approximation level accordingly. This allows a
more consistent and predictable execution of applications with
real-time constraints.

The problem of high and variable server load is especially
serious for platforms with lower computation power such as
cloudlets. For such cases, Hoang et al. [49] proposed restrict-
ing the number of users who can access such a resource based
on the computation request received from the mobile device.
This supports a better QoE to users who have already started
executing their applications using the cloud system.

ECOS proposes using time-sharing of communication among
multiple users to handle server load [47]. This allows many
users to utilize the same server system while communicating
only during fixed time periods. Time-sharing of network traffic
was implemented using software-defined networking.

8.3. Discussion

The amount of cloud resources allocated and the workload
affects the performance of offloaded mobile applications. How-
ever, since application offloading has yet to be in mainstream
use, there is no real implementation to understand the effect
of offloading from multiple devices on cloud resources. Thus,
resource provisioning for offloading applications has still not
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Table 8: A summary of adaptation techniques used by offloading frameworks to handle cloud system management variations.

Variation Parameter Offloading Framework Adaptation Technique

Resource Provisioning
OSullivan & Grigoras [81] Proposes a cost model for mobile workloads
Sood & Sandhu [103] Allocates cloud resources by predicting mobile workload

Workload Management

ThinkAir [60] Uses server latency value to determine server load
Ravindranath et al. [87] Varies the level of approximation to adapt to latency requirement
Hoang et al. [49] Restricts number of users to cloudlet to reduce workload
ECOS [47] Time-sharing of communication across multiple users

been widely explored. For mainstream use, efficient provision-
ing is necessary to ensure predictable performance and mone-
tary cost. Another key issue not explored yet is pricing of cloud
servers for mobile workloads. So far, there are no studies to find
out the monetary cost that users are ready to pay for improving
mobile application performance.

9. Impact on Quality of Experience (QoE)

The variations in the environmental parameters affect the
quality of experience (QoE) of the user. Although the objective
of the offloading system is to maintain high QoE in a difficult
environment, this is not always possible. In this section, we
study the parameters that affect the QoE of the user. We also
briefly discuss how the importance of different QoE parameters
may vary depending on the context.

Table 9 shows the impact of different parameters on user’s
QoE. While discussing the effect on each QoE component, we
have assumed that other parameters remain constant. Moreover,
we also assume that the offloading system considers only one
component of the QoE at a time.

9.1. Energy Consumption

We first discuss the effect of the application component on
energy consumption. Increasing the amount of concurrency and
multitasking allow higher energy savings by making it easier to
offload software components. However, increase in real-time
constraints increases amount of local execution, and reduces
energy savings.

The network component of the ecosystem is also an impor-
tant factor influencing energy consumption. Higher bandwidth
reduces the energy cost of transmission, thus saving energy. In-
termittent connectivity leads to checkpointing of applications,
and more local execution, thus leading to lower energy savings.
Latency has no direct effect on energy. However, latency can
increase the energy consumption indirectly by increasing the
execution time. Network interfaces have different energy con-
sumption patterns, and thus the energy saving varies. More sig-
nal handoffs increases energy consumption and lowers energy
gain by increasing the cost of hand-off from one base station to
another [12].

The execution platform also affects the energy consump-
tion. Increase in number of mobile processors increases the
energy cost, and lowers energy savings. Intelligent use of Dy-
namic Voltage and Frequency Scaling (DVFS) can lead to higher
energy savings, by allowing a processor to run at lower speed,

while offloading more tasks. Having a coprocessor also leads to
lower energy savings, since running it increases the energy con-
sumption. Having a higher energy profile gives the offloading
system more scope to offload, and leads to higher energy sav-
ings. A cloud architecture having more computation resources
nearby reduces the energy cost of transmission, and thus leads
to higher energy savings.

Management of the cloud server can also impact energy
savings. Having sufficient resources on the cloud server is es-
sential to execute tasks, and thus increases energy savings. How-
ever, variation in workloads does not directly impact energy
savings, since we only consider the energy savings of mobile
battery.

9.2. Completion Time
The completion time is affected by the number and type of

applications given by the user. Higher concurrency and more
multitasking allows better utilization of parallelism, leading to
greater time saving. Real-time constraints force the offloading
system to schedule the tasks in a way that satisfies the con-
straints. This may lead to higher or lower completion times,
depending on the condition of the channel in the offloading sys-
tem.

The network condition has a major impact on completion
time. Higher bandwidth and lower latency lead to faster trans-
mission of data, and thus greater time saving. Intermittent con-
nectivity leads to loss of contact with the cloud system, leading
to more local execution and thus lower time saving. Some net-
work interfaces inherently provide higher bandwidth and lower
latency, thus affecting the completion time. Higher user mo-
bility (signal handoffs) forces the cloud system to migrate data
across different servers, in order to better support the user. This
leads to lower time saving.

The execution platform also affects the completion time. In-
crease in the number of mobile processors leads to faster exe-
cution, but decreases the scope of offloading, and thus reduces
time saving. A similar result is obtained by adding a copro-
cessor on the mobile system. However, DVFS has no effect on
the completion time, unless the offloading system optimizes en-
ergy consumption. More computation-intensive jobs gives the
offloading system more scope to offload, leading to higher time
saving. A cloud system with more layers and having some lay-
ers closer to the mobile device reduces latency and thus leads
to higher time saving.

Efficient cloud management techniques are important to en-
sure fast completion times. Fast resource allocation allows lower
setup delays and leads to faster execution. Similarly, efficient
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Table 9: Summary of parameters that affect Quality of Experience (QoE) for a user.

Source of
Variation

Environmental
Parameter

Energy
Consumption

Completion
Time

Monetary
Cost Security

Application
Degree of concurrency X X
Workload Heterogeneity X X
Real-time Constraints X X X X

Network

Bandwidth Variation X X
Intermittent Connectivity X X
Network Interface X X X X
Signal Handoff X X X

Execution
Platform

Mobile Processors X X
GPU X X
Energy/Time Profile X X
Memory Architecture X
Cloud Architecture X X X X

Cloud
Management

Resource Provisioning X X X
Workload Management X X

load-balancing of workloads across cloud servers also leads to
faster response times and thus faster execution.

9.3. Monetary Cost
User surveys suggest that controlling monetary cost incurred

by mobile software is the greatest concern of users [41]. Thus,
an adaptive offloading system must control the monetary cost.

The application component of the mobile ecosystem has
a significant impact on the monetary cost. Utilizing higher
amount of concurrency and more multitasking require more
server processors, thus increasing the server cost. Having more
real-time constraints increases the amount of communication,
leading to higher bandwidth cost.

The monetary cost of offloading is affected by only the net-
work interface used by the offloading system. This is because
network interfaces have different pricing models. For example,
since 3G has lower bandwidth and higher latency than LTE,
data transfer over 3G usually costs lower. Thus, using an inter-
face that provides better service increases the monetary cost.

Among the many parameters of execution platform, only
the cloud architecture affects the monetary cost. This is because
hiring more computation resources is expensive. Thus, the cost
goes up with an increase in more layers of cloud system.

Cloud management plays an important role in determining
the monetary cost. The cost of acquiring resources is depen-
dent on the type of resource allocation techniques used. More-
over, the resources used to allocate the workloads across multi-
ple servers also has a monetary cost.

9.4. Security
Mobile devices usually contain a lot of private data of users.

Moreover, ensuring the integrity of the data that has been com-
puted remotely is also important. Thus, security forms an im-
portant component of the QoE.

The type of application has an impact on privacy of data.
Presence of more real-time constraints in the application in-
creases the number of migrations from the cloud to the mobile

device. This makes the system more vulnerable to a man-in-
the-middle attack, where the attacker alters the packets during
transmission.

The variations in the parameters of the network component
also affect security. Some network interfaces, like Wi-Fi, are
more vulnerable to man-in-the-middle attacks, as compared to
3G or LTE [111]. More signal handoffs increase security by
making it more difficult to sniff data [105].

Only the cloud architecture in execution platform compo-
nent has an impact on security. A malicious remote compu-
tation resource used by the mobile device for offloading can
subtly modify the execution of the application. This can affect
the integrity of the running application, making the system vul-
nerable to attacks.

9.5. Discussion

Offloading systems currently focus on one or two QoE met-
rics. However, the expectations of users vary depending on the
context in which they use the mobile device. For example, if
the mobile device is at the user’s home, then the user has access
to a charging point. In such a scenario, energy consumption is
not an important component of the QoE. Similarly, for back-
ground applications, completion time is not considered to be
an important consideration. In this way, the importance of en-
ergy consumption and completion time vary depending on the
context in which an offloading system is used.

An offloading system can utilize such context-awareness to
better optimize the relevant QoE parameters. Such a context-
aware offloading system was proposed in Lin et al. [72]. In this
study, the importance of energy consumption as part of the QoE
was decided based on the previous values of inter-charging in-
tervals. A mobile device having higher inter-charging interval
requires more energy saving, and thus energy consumption be-
comes a more important component of QoE. The objective of
offloading can be modified to increase the importance of energy
saving in such cases.

16



User expectations also affect the monetary cost. A user run-
ning more energy or computation-intensive applications needs
more support from remote computation resources. In such a
case, the user might be willing to pay a higher monetary cost to
save time and energy. In this way, user expectation of energy
and time affects the monetary cost.

Users may have different expectations of security depend-
ing on the type of applications and sensitivity of data. Sup-
porting security also affects other parameters of QoE. Providing
better security increases the overhead of encryption and decryp-
tion, and thus requires higher reservation of resources [70]. In
this way, a careful balance must be made between providing
enough security and optimizing other parameters of QoE.

Handling these different user expectations is important for
adoption of offloading. However, current offloading systems do
not consider the varying expectations of users. Further work
to explore ways of using such context-awareness is needed to
better support users.

10. Open Issues and Future Directions

In this section, we summarize the challenges and open is-
sues that still remain towards adoption of application offload-
ing. We have seen so far that offloading frameworks currently
adapt to some of the parameters, and focus on improving only
a few Quality of Experience (QoE) parameters. Adapting to all
the diverse variations possible in the environment, while bal-
ancing different parameters of QoE still remains a major chal-
lenge. In the rest of this section, we discuss the most important
parameters to which offloading frameworks need to adapt to en-
able their mainstream use.

10.1. Leveraging Heterogeneity in Cloud Architecture

One major factor that affects the performance of offload-
ing frameworks is the latency of accessing cloud servers from
smartphones. Currently cloud computing resources are mostly
in the form of large data centers. While data centers have large
computing and storage resources, they depend on the Internet
for connecting with mobile devices. Thus, managing latency
expectations is usually challenging. Moreover, many computa-
tion intensive applications on mobile devices are latency-sensitive.

One of the most important factors affecting latency is the
distance of the server from the smartphone. Moving cloud re-
sources closer to mobile users lowers network latency and en-
ables faster response. Such resources may include the user’s
own desktop, laptop, set-top boxes, routers, tablets or special-
purpose hardware devices. This is variously referred to as fog
computing [16], mobile edge computing [37, 54] or edge-centric
computing [46]. So far, frameworks such as Hyrax [77], virtual
mobile cloud computing provider [53] and RMCC [4] that uti-
lize other mobile devices in the vicinity have been used to speed
up applications. Another possible approach is utilizing comput-
ing resources provided by telecom operators [115]. However,
utilizing such varieties of computing resources depending on
their availability remains an open issue .

10.2. Ensuring Predictability of Application Performance

Most offloading frameworks developed so far focus on show-
ing the improvement in performance over a limited number of
benchmarks [102]. However, the impact of offloading on per-
formance of applications differ based on their workloads and
characteristics. Implementing a single offloading framework
that can manage all applications is complex due to the unpre-
dictable ways applications interact with the operating system.

One possible way of resolving this problem is to develop an
emulation framework that can study the performance of offload-
ing. Emulation frameworks have been shown to be effective in
network protocol testing, and can bridge the gap between im-
plementation and simulation based offloading works [55]. An
offloading framework emulator will allow designers to propose
new solution techniques and validate their approach without
complex implementations.

10.3. Adapting to Workload of Multiple Users

An important challenge of utilizing offloading is to provide
acceptable performance under different load. The performance
of offloading depends on the quality of wireless network, and
the availability of server resources. Both these factors are af-
fected by the number of users. Managing these variations re-
quires both better guarantee of service from network providers
and cloud service providers.

Network service providers are gradually moving towards
better QoE guarantees. For example, the cellular protocol cur-
rently under development, 5G aims to guarantee 100 Mbps worst
data rate, as compared to 1 Mbps offered by LTE [9]. Similarly,
the 802.11e standard for Wi-Fi contains contention-free provi-
sions for time-critical data [76]. These techniques can be uti-
lized to provide performance guarantees to mobile applications.

Managing QoE expectations while avoiding over-provisioning
of resources is a major area of researching in cloud computing
[10]. A promising way of managing such requirements is to de-
velop better mathematical models of workloads. Mathematical
models allow the cloud service providers to better predict user
expectations and provide adequate computing resources, such
as servers and data storage. We discussed one approach of es-
timating the amount of resources needed on the cloud server in
Section 8. However, it does not take into account the presence
of multiple users. To reduce cost for cloud service providers
and help provision adequate resources, formal mathematical
models considering different workloads of users are needed.

10.4. Making Offloading Frameworks Context-Aware

An offloading framework has to balance multiple user ob-
jectives. These user objectives are often dynamic and depend
on the context in which the mobile device is used. Moreover,
available cloud resources also vary depending on user location.

A possible way of handling such cases is to make the of-
floading framework context-aware. Context-aware systems adapt
their operations to the current context without explicit user in-
tervention [13]. This improves the usability and performance
of a system. For example, a mobile device can select a better
cloud service provider if it is aware of its location.
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A variety of techniques have been explored to make a mo-
bile system context-aware. Mobile systems now contain ac-
celerometers which allow the system to detect the user’s mobil-
ity pattern. Similarly, the residual capacity of the battery can be
used to determine if energy-intensive tasks should be offloaded.
Integrating such techniques into offloading frameworks remains
an open research problem.

10.5. Ensuring Interoperability Across Cloud Service Providers

Users may prefer to use services from multiple cloud ser-
vice providers to ensure greater reliability, greater availabil-
ity of cloud resources and faster performance depending on
their location. Seamless moving from one service to another
requires a mechanism of communication data across multiple
cloud server systems.

Current offloading frameworks do not look at cloud inter-
operability. However, a framework CloudNet showed that mi-
gration of VM from one cloud system to another is possible
without any downtime for the user [93]. A key requirement
for cloud interoperability is to have widely used standards for
communication across multiple service providers. Thus, efforts
towards developing protocols and standardization of communi-
cation are needed to better serve users.

10.6. Managing Multi-tasking Environments

Recently multi-tasking has become very popular on smart-
phones. Multi-tasking refers to simultaneous execution of mul-
tiple applications on the smartphone. Multi-tasking presents
a major challenge for offloading frameworks, since it is diffi-
cult for the offloading framework to predict when the user may
switch applications. It may also lead to a queue of offloading
requests in the smartphone from the different applications.

So far, offloading requests from multiple applications has
been studied in Ready-Set-Go [110]. This study used a simula-
tion of offloading requests from multiple applications to show
how each particular offloading request can be scheduled. How-
ever, the effectiveness of offloading with multiple applications
has not been studied in actual multi-tasking environments. Ef-
forts to extend offloading to this scenario are needed to ensure
good Quality of Experience for users.

10.7. Meeting Application-specific Objectives

There are some application-specific optimizations that can
further improve user experience. For example, Hu et al. [51]
showed that performing some additional computation on the
smartphone can reduce the amount of data transfer and energy
in the case of object detection from video [51]. Similarly, Odessa
increases the amount of parallelism when it needs to improve
throughput in gesture recognition algorithms [84].

Current offloading frameworks usually model all applica-
tions in the same way. While this simplifies the modeling of
the problem, this does not give the full benefit of offloading to
the user. A major challenge that still remains is to ensure that
application-specific optimizations can be performed by a single
offloading framework.

11. Conclusion

In this paper, we survey adaptation techniques utilized for
code offloading in computation offloading systems. Mobile sys-
tems are used in a changing and unpredictable environment.
Thus, to enable widespread adoption, offloading systems need
to be adaptive to such an environment.

We first identify that an offloading system is influenced by
parameters from three categories - applications characteristics,
network properties, and execution platform features. Several
parameters within each category are described that influence the
benefits of using the offloading framework. We also explained
the methods used by offloading systems to adapt to such vari-
ations, and their impact on the quality of experience (QoE) of
the user. We summarized our findings in Table 4.

Although research in offloading systems has made a lot of
progress, they are still not adaptive to the entire range of pa-
rameters that influence the operating environment. Using Table
4 as a reference, we identified variations in different parame-
ters which current offloading systems do not handle. We sug-
gested more effort towards offloading of multiple applications.
We also showed that offloading systems need better adaptation
techniques to handle user mobility. Moreover, they need to
adapt to a variety of different mobile and cloud systems to sup-
port more users. Increasing adaptiveness to these environmen-
tal parameters will enable offloading systems to better support
user expectations.
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